These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33449437)

  • 1. Rapid High-Resolution 3D Printing and Surface Functionalization via Type I Photoinitiated RAFT Polymerization.
    Lee K; Corrigan N; Boyer C
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):8839-8850. PubMed ID: 33449437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Versatile 3D and 4D Printing System through Photocontrolled RAFT Polymerization.
    Zhang Z; Corrigan N; Bagheri A; Jin J; Boyer C
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):17954-17963. PubMed ID: 31642580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Mechanical Properties of 3D-printed Objects by Mixing Chain Transfer Agents in Norrish Type I Photoinitiated RAFT Polymerization.
    Yuan Z; Li G; Yang C; Zhu W; Li J; Zhu J
    Chem Asian J; 2024 Jun; ():e202400648. PubMed ID: 38946109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing and In Situ Surface Modification via Type I Photoinitiated Reversible Addition-Fragmentation Chain Transfer Polymerization.
    Corrigan N; Boyer C
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35253792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Photoinduced Dual-Wavelength Approach for 3D Printing and Self-Healing of Thermosetting Materials.
    Zhang Z; Corrigan N; Boyer C
    Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202114111. PubMed ID: 34859952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the Mechanical Properties of 3D-printed Objects by the RAFT Process: From Chain-Growth to Step-Growth.
    Pan X; Li J; Li Z; Li Q; Pan X; Zhang Z; Zhu J
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318564. PubMed ID: 38230985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Living 3D Printing via Free Radical Promoted Cationic RAFT Polymerization.
    Zhao B; Li J; Li G; Yang X; Lu S; Pan X; Zhu J
    Small; 2023 Dec; 19(50):e2207637. PubMed ID: 36707417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinduced Free Radical Promoted Cationic RAFT Polymerization toward "Living" 3D Printing.
    Zhao B; Li J; Pan X; Zhang Z; Jin G; Zhu J
    ACS Macro Lett; 2021 Oct; 10(10):1315-1320. PubMed ID: 35549049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials Testing for the Development of Biocompatible Devices through Vat-Polymerization 3D Printing.
    González G; Baruffaldi D; Martinengo C; Angelini A; Chiappone A; Roppolo I; Pirri CF; Frascella F
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32916902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-Light-Driven Rapid 3D Printing of Photoresponsive Resins for Optically Clear Multifunctional 3D Objects.
    Shin S; Kwon Y; Hwang C; Jeon W; Yu Y; Paik HJ; Lee W; Kwon MS; Ahn D
    Adv Mater; 2024 May; 36(19):e2311917. PubMed ID: 38288894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porphyrinic Zirconium Metal-Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PET-RAFT Polymerization and Stereolithography.
    Zhang L; Shi X; Zhang Z; Kuchel RP; Namivandi-Zangeneh R; Corrigan N; Jung K; Liang K; Boyer C
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5489-5496. PubMed ID: 33179352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing preview for stereo-lithography based on photopolymerization kinetic models.
    Gao Y; Xu L; Zhao Y; You Z; Guan Q
    Bioact Mater; 2020 Dec; 5(4):798-807. PubMed ID: 32637744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructure Control in 3D Printed Materials.
    Bobrin VA; Lee K; Zhang J; Corrigan N; Boyer C
    Adv Mater; 2022 Jan; 34(4):e2107643. PubMed ID: 34742167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Wavelength Orthogonality in Photoinitiated RAFT Dispersion Polymerization and Photografting for Monodisperse Surface-Functional Polymeric Microspheres.
    Zhang K; Xiao M; Zhang L; Chen Y; Tan J
    ACS Macro Lett; 2022 Jun; 11(6):716-722. PubMed ID: 35570801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Volumetric 3D Printing: Xolography in Flow.
    Stüwe L; Geiger M; Röllgen F; Heinze T; Reuter M; Wessling M; Hecht S; Linkhorst J
    Adv Mater; 2024 Jan; 36(4):e2306716. PubMed ID: 37565596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA.
    Lin CH; Lin YM; Lai YL; Lee SY
    J Prosthet Dent; 2020 Feb; 123(2):349-354. PubMed ID: 31202550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Bio-Based Polyester Resins for Vat Photopolymerization 3D Printing.
    Cazin I; Ocepek M; Kecelj J; Stražar AS; Schlögl S
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-Demanding Photocontrolled RAFT Polymerization Under Ambient Conditions.
    Peng Y; Liu S; Wang L; Xu Y; Wu Z; Chen H
    Macromol Rapid Commun; 2022 Apr; 43(8):e2100920. PubMed ID: 35138013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeform Three-Dimensionally Printed Microchannels via Surface-Initiated Photopolymerization Combined with Sacrificial Molding.
    Chen L; Kenkel SM; Hsieh PH; Gryka MC; Bhargava R
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50105-50112. PubMed ID: 33091299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.