These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33449694)

  • 1. SMILES to Smell: Decoding the Structure-Odor Relationship of Chemical Compounds Using the Deep Neural Network Approach.
    Sharma A; Kumar R; Ranjta S; Varadwaj PK
    J Chem Inf Model; 2021 Feb; 61(2):676-688. PubMed ID: 33449694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XGBoost odor prediction model: finding the structure-odor relationship of odorant molecules using the extreme gradient boosting algorithm.
    Tyagi P; Sharma A; Semwal R; Tiwary US; Varadwaj PK
    J Biomol Struct Dyn; 2024; 42(20):10727-10738. PubMed ID: 37723894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepOlf: Deep Neural Network Based Architecture for Predicting Odorants and Their Interacting Olfactory Receptors.
    Sharma A; Kumar R; Semwal R; Aier I; Tyagi P; Varadwaj PK
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):418-428. PubMed ID: 32750862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep position-encoding model for predicting olfactory perception from molecular structures and electrostatics.
    Zhang M; Hiki Y; Funahashi A; Kobayashi TJ
    NPJ Syst Biol Appl; 2024 Jul; 10(1):76. PubMed ID: 39019918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different molecular enumeration influences in deep learning: an example using aqueous solubility.
    Chen JH; Tseng YJ
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32501508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing molecular representations, e-nose signals, and other featurization, for learning to smell aroma molecules.
    Debnath T; Badreddine S; Kumari P; Spranger M
    PLoS One; 2023; 18(8):e0289881. PubMed ID: 37566580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting odorant chemical class from odorant descriptor values with an assembly of multi-layer perceptrons.
    Bachtiar LR; Unsworth CP; Newcomb RD; Crampin EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2756-9. PubMed ID: 22254912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A System-Wide Understanding of the Human Olfactory Percept Chemical Space.
    Kowalewski J; Huynh B; Ray A
    Chem Senses; 2021 Jan; 46():. PubMed ID: 33640959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SmellSpace: An Odor-Based Social Network as a Platform for Collecting Olfactory Perceptual Data.
    Snitz K; Perl O; Honigstein D; Secundo L; Ravia A; Yablonka A; Endevelt-Shapira Y; Sobel N
    Chem Senses; 2019 Apr; 44(4):267-278. PubMed ID: 30873534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smell compounds classification using UMAP to increase knowledge of odors and molecular structures linkages.
    Rugard M; Jaylet T; Taboureau O; Tromelin A; Audouze K
    PLoS One; 2021; 16(5):e0252486. PubMed ID: 34048487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning to smell the roses: experience-dependent neural plasticity in human piriform and orbitofrontal cortices.
    Li W; Luxenberg E; Parrish T; Gottfried JA
    Neuron; 2006 Dec; 52(6):1097-108. PubMed ID: 17178411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the Structure-Odor Relationship of Molecules: A Computational Study Based on Deep Learning.
    Bo W; Yu Y; He R; Qin D; Zheng X; Wang Y; Ding B; Liang G
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning hidden patterns from patient multivariate time series data using convolutional neural networks: A case study of healthcare cost prediction.
    Morid MA; Sheng ORL; Kawamoto K; Abdelrahman S
    J Biomed Inform; 2020 Nov; 111():103565. PubMed ID: 32980530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Olfactory Sensor Array for Predicting Chemical Odor Characteristics from Mass Spectra with Deep Learning.
    Nozaki Y; Nakamoto T
    Methods Mol Biol; 2019; 2027():29-47. PubMed ID: 31309470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the chemical structure on the odor qualities and odor thresholds of guaiacol-derived odorants, Part 1: Alkylated, alkenylated and methoxylated derivatives.
    Schranz M; Lorber K; Klos K; Kerschbaumer J; Buettner A
    Food Chem; 2017 Oct; 232():808-819. PubMed ID: 28490144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data based predictive models for odor perception.
    Chacko R; Jain D; Patwardhan M; Puri A; Karande S; Rai B
    Sci Rep; 2020 Oct; 10(1):17136. PubMed ID: 33051564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring smells.
    Haddad R; Lapid H; Harel D; Sobel N
    Curr Opin Neurobiol; 2008 Aug; 18(4):438-44. PubMed ID: 18824102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison Study on the Prediction of Multiple Molecular Properties by Various Neural Networks.
    Hou F; Wu Z; Hu Z; Xiao Z; Wang L; Zhang X; Li G
    J Phys Chem A; 2018 Nov; 122(46):9128-9134. PubMed ID: 30285444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SMELL-S and SMELL-R: Olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience.
    Hsieh JW; Keller A; Wong M; Jiang RS; Vosshall LB
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11275-11284. PubMed ID: 29073044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.