These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33449756)

  • 1. Confinement-Induced Self-Pumping in 3D Active Fluids.
    Varghese M; Baskaran A; Hagan MF; Baskaran A
    Phys Rev Lett; 2020 Dec; 125(26):268003. PubMed ID: 33449756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from turbulent to coherent flows in confined three-dimensional active fluids.
    Wu KT; Hishamunda JB; Chen DT; DeCamp SJ; Chang YW; Fernández-Nieves A; Fraden S; Dogic Z
    Science; 2017 Mar; 355(6331):. PubMed ID: 28336609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct and inverse pumping in flows with homogeneous and non-homogeneous swirl.
    Pothérat A; Rubiconi F; Charles Y; Dousset V
    Eur Phys J E Soft Matter; 2013 Aug; 36(8):94. PubMed ID: 23989759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twist-induced crossover from two-dimensional to three-dimensional turbulence in active nematics.
    Shendruk TN; Thijssen K; Yeomans JM; Doostmohammadi A
    Phys Rev E; 2018 Jul; 98(1-1):010601. PubMed ID: 30110824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confinement Controls the Bend Instability of Three-Dimensional Active Liquid Crystals.
    Chandrakar P; Varghese M; Aghvami SA; Baskaran A; Dogic Z; Duclos G
    Phys Rev Lett; 2020 Dec; 125(25):257801. PubMed ID: 33416339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids.
    Słomka J; Dunkel J
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2119-2124. PubMed ID: 28193853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous flow in polar active fluids: the effect of a phenomenological self propulsion-like term.
    Bonelli F; Gonnella G; Tiribocchi A; Marenduzzo D
    Eur Phys J E Soft Matter; 2016 Jan; 39(1):1. PubMed ID: 26769011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of plasma elongation on turbulent transport in magnetically confined plasmas.
    Angelino P; Garbet X; Villard L; Bottino A; Jolliet S; Ghendrih P; Grandgirard V; McMillan BF; Sarazin Y; Dif-Pradalier G; Tran TM
    Phys Rev Lett; 2009 May; 102(19):195002. PubMed ID: 19518964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermittency and Critical Scaling in Annular Couette Flow.
    Takeda K; Duguet Y; Tsukahara T
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous Chained Turbulence in Actively Driven Flows on Spheres.
    Mickelin O; Słomka J; Burns KJ; Lecoanet D; Vasil GM; Faria LM; Dunkel J
    Phys Rev Lett; 2018 Apr; 120(16):164503. PubMed ID: 29756929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistence of Active and Hydrodynamic Turbulence in Two-Dimensional Active Nematics.
    Rorai C; Toschi F; Pagonabarraga I
    Phys Rev Lett; 2022 Nov; 129(21):218001. PubMed ID: 36461968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abrupt Transition between Three-Dimensional and Two-Dimensional Quantum Turbulence.
    Müller NP; Brachet ME; Alexakis A; Mininni PD
    Phys Rev Lett; 2020 Apr; 124(13):134501. PubMed ID: 32302183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental confirmation of self-regulating turbulence paradigm in two-dimensional spectral condensation.
    Bardóczi L; Bencze A; Berta M; Schmitz L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063103. PubMed ID: 25615202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability analysis of flow of active extensile fibers in confined domains.
    Zhao L; Yao L; Golovaty D; Ignés-Mullol J; Sagués F; Carme Calderer M
    Chaos; 2020 Nov; 30(11):113105. PubMed ID: 33261333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-induced nonequilibrium self-assembly in suspensions of stiff, apolar, active filaments.
    Pandey A; Sunil Kumar PB; Adhikari R
    Soft Matter; 2016 Nov; 12(44):9068-9076. PubMed ID: 27774542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergent states in dense systems of active rods: from swarming to turbulence.
    Wensink HH; Löwen H
    J Phys Condens Matter; 2012 Nov; 24(46):464130. PubMed ID: 23114651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Condensation of Coherent Structures in Turbulent Flows.
    Chong KL; Huang SD; Kaczorowski M; Xia KQ
    Phys Rev Lett; 2015 Dec; 115(26):264503. PubMed ID: 26764994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows.
    Premnath KN; Pattison MJ; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026703. PubMed ID: 19391870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective dynamics of microtubule-based 3D active fluids from single microtubules.
    Bate TE; Jarvis EJ; Varney ME; Wu KT
    Soft Matter; 2019 Jun; 15(25):5006-5016. PubMed ID: 31165127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual-friction-driven turbulent statistics in the hydrodynamic regime of superfluid ^{3}He-B.
    Dutta K
    Phys Rev E; 2019 Mar; 99(3-1):033111. PubMed ID: 30999398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.