These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 33449772)

  • 1. Critical Fluorescence of a Transmon at the Schmid Transition.
    Houzet M; Glazman LI
    Phys Rev Lett; 2020 Dec; 125(26):267701. PubMed ID: 33449772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photon-Instanton Collider Implemented by a Superconducting Circuit.
    Burshtein A; Kuzmin R; Manucharyan VE; Goldstein M
    Phys Rev Lett; 2021 Apr; 126(13):137701. PubMed ID: 33861127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave transitions as a signature of coherent parity mixing effects in the Majorana-transmon qubit.
    Ginossar E; Grosfeld E
    Nat Commun; 2014 Sep; 5():4772. PubMed ID: 25205082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit.
    Scarlino P; van Woerkom DJ; Mendes UC; Koski JV; Landig AJ; Andersen CK; Gasparinetti S; Reichl C; Wegscheider W; Ensslin K; Ihn T; Blais A; Wallraff A
    Nat Commun; 2019 Jul; 10(1):3011. PubMed ID: 31285437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation.
    George RE; Senior J; Saira OP; Pekola JP; de Graaf SE; Lindström T; Pashkin YA
    J Low Temp Phys; 2017; 189(1):60-75. PubMed ID: 32025044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical slowing down in circuit quantum electrodynamics.
    Brookes P; Tancredi G; Patterson AD; Rahamim J; Esposito M; Mavrogordatos TK; Leek PJ; Ginossar E; Szymanska MH
    Sci Adv; 2021 May; 7(21):. PubMed ID: 34138743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherence and decay of higher energy levels of a superconducting transmon qubit.
    Peterer MJ; Bader SJ; Jin X; Yan F; Kamal A; Gudmundsen TJ; Leek PJ; Orlando TP; Oliver WD; Gustavsson S
    Phys Rev Lett; 2015 Jan; 114(1):010501. PubMed ID: 25615454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the spontaneous emission of a superconducting transmon qubit.
    Houck AA; Schreier JA; Johnson BR; Chow JM; Koch J; Gambetta JM; Schuster DI; Frunzio L; Devoret MH; Girvin SM; Schoelkopf RJ
    Phys Rev Lett; 2008 Aug; 101(8):080502. PubMed ID: 18764596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A scanning transmon qubit for strong coupling circuit quantum electrodynamics.
    Shanks WE; Underwood DL; Houck AA
    Nat Commun; 2013; 4():1991. PubMed ID: 23744062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposal for a transmon-based quantum router.
    Sala A; Blaauboer M
    J Phys Condens Matter; 2016 Jul; 28(27):275701. PubMed ID: 27199297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual-photon-mediated spin-qubit-transmon coupling.
    Landig AJ; Koski JV; Scarlino P; Müller C; Abadillo-Uriel JC; Kratochwil B; Reichl C; Wegscheider W; Coppersmith SN; Friesen M; Wallraff A; Ihn T; Ensslin K
    Nat Commun; 2019 Nov; 10(1):5037. PubMed ID: 31695044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and Unconditional All-Microwave Reset of a Superconducting Qubit.
    Magnard P; Kurpiers P; Royer B; Walter T; Besse JC; Gasparinetti S; Pechal M; Heinsoo J; Storz S; Blais A; Wallraff A
    Phys Rev Lett; 2018 Aug; 121(6):060502. PubMed ID: 30141638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical amplification assisted by two-photon processes in a 3-level transmon artificial atom.
    Chien WC; Hsieh YL; Chen CH; Dubyna D; Wu CS; Kuo W
    Opt Express; 2019 Dec; 27(25):36088-36099. PubMed ID: 31873395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit.
    Xu Y; Cai W; Ma Y; Mu X; Hu L; Chen T; Wang H; Song YP; Xue ZY; Yin ZQ; Sun L
    Phys Rev Lett; 2018 Sep; 121(11):110501. PubMed ID: 30265093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement-induced qubit state mixing in circuit QED from up-converted dephasing noise.
    Slichter DH; Vijay R; Weber SJ; Boutin S; Boissonneault M; Gambetta JM; Blais A; Siddiqi I
    Phys Rev Lett; 2012 Oct; 109(15):153601. PubMed ID: 23102305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit.
    Sun L; DiCarlo L; Reed MD; Catelani G; Bishop LS; Schuster DI; Johnson BR; Yang GA; Frunzio L; Glazman L; Devoret MH; Schoelkopf RJ
    Phys Rev Lett; 2012 Jun; 108(23):230509. PubMed ID: 23003936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random access quantum information processors using multimode circuit quantum electrodynamics.
    Naik RK; Leung N; Chakram S; Groszkowski P; Lu Y; Earnest N; McKay DC; Koch J; Schuster DI
    Nat Commun; 2017 Dec; 8(1):1904. PubMed ID: 29199271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave photon Fock state generation by stimulated Raman adiabatic passage.
    Premaratne SP; Wellstood FC; Palmer BS
    Nat Commun; 2017 Jan; 8():14148. PubMed ID: 28128205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system.
    Rouxinol F; Hao Y; Brito F; Caldeira AO; Irish EK; LaHaye MD
    Nanotechnology; 2016 Sep; 27(36):364003. PubMed ID: 27483428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of the three-state dressed states in circuit quantum electrodynamics.
    Koshino K; Terai H; Inomata K; Yamamoto T; Qiu W; Wang Z; Nakamura Y
    Phys Rev Lett; 2013 Jun; 110(26):263601. PubMed ID: 23848874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.