These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33449876)

  • 1. Hybrid Tongue - Myoelectric Control Improves Functional Use of a Robotic Hand Prosthesis.
    Johansen D; Popovic DB; Dosen S; Struijk LNSA
    IEEE Trans Biomed Eng; 2021 Jun; 68(6):2011-2020. PubMed ID: 33449876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving bimanual interaction with a prosthesis using semi-autonomous control.
    Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M
    J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of virtual hand prosthesis control using an inductive tongue control system.
    Johansen D; Sebelius F; Jensen S; Bentsen B; Popović DB; Andreasen Struijk LN
    Assist Technol; 2016; 28(1):22-9. PubMed ID: 26479838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand.
    Pena AE; Rincon-Gonzalez L; Abbas JJ; Jung R
    PLoS One; 2019; 14(1):e0210956. PubMed ID: 30650161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis.
    Matrone GC; Cipriani C; Carrozza MC; Magenes G
    J Neuroeng Rehabil; 2012 Jun; 9():40. PubMed ID: 22703711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplitude versus spatially modulated electrotactile feedback for myoelectric control of two degrees of freedom.
    Garenfeld MA; Mortensen CK; Strbac M; Dideriksen JL; Dosen S
    J Neural Eng; 2020 Aug; 17(4):046034. PubMed ID: 32650320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
    Segil JL; Controzzi M; Weir RF; Cipriani C
    J Rehabil Res Dev; 2014; 51(9):1439-54. PubMed ID: 25803683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of a Robotic Hand Using a Tongue Control System-A Prosthesis Application.
    Johansen D; Cipriani C; Popovic DB; Struijk LN
    IEEE Trans Biomed Eng; 2016 Jul; 63(7):1368-76. PubMed ID: 26780786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional comparison of upper extremity amputees using myoelectric and conventional prostheses.
    Stein RB; Walley M
    Arch Phys Med Rehabil; 1983 Jun; 64(6):243-8. PubMed ID: 6860093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure design for a Two-DoF myoelectric prosthetic hand to realize basic hand functions in ADLs.
    Hoshigawa S; Jiang Y; Kato R; Morishita S; Nakamura T; Yabuki Y; Yokoi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4781-4. PubMed ID: 26737363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haptic shared control improves neural efficiency during myoelectric prosthesis use.
    Thomas N; Miller AJ; Ayaz H; Brown JD
    Sci Rep; 2023 Jan; 13(1):484. PubMed ID: 36627340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grasp specific and user friendly interface design for myoelectric hand prostheses.
    Mohammadi A; Lavranos J; Howe R; Choong P; Oetomo D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1621-1626. PubMed ID: 28814052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of calibration parameters on the control of a myoelectric hand prosthesis using EMG feedback.
    Tchimino J; Markovic M; Dideriksen JL; Dosen S
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34082406
    [No Abstract]   [Full Text] [Related]  

  • 16. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching.
    Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM
    Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. i-MYO: A multi-grasp prosthetic hand control system based on gaze movements, augmented reality, and myoelectric signals.
    Shi C; Zhao J; Yang D; Jiang L
    Int J Med Robot; 2024 Feb; 20(1):e2617. PubMed ID: 38536731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of multi-grip myoelectric prosthetic hands on daily activities, pain-related disability and prosthesis use compared with single-grip myoelectric prostheses: A single-case study.
    Widehammar C; Hiyoshi A; Lidström Holmqvist K; Lindner H; Hermansson L
    J Rehabil Med; 2022 Jan; 54():jrm00245. PubMed ID: 34766184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hand Function Kinematics when using a Simulated Myoelectric Prosthesis.
    Williams HE; Boser QA; Pilarski PM; Chapman CS; Vette AH; Hebert JS
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():169-174. PubMed ID: 31374625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of regenerative peripheral nerve interfaces and intramuscular electrodes to improve prosthetic grasp selection: a case study.
    Lee C; Vaskov AK; Gonzalez MA; Vu PP; Davis AJ; Cederna PS; Chestek CA; Gates DH
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317254
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.