These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33449894)

  • 1. Retarded Sampled-Data Control Design for Interconnected Power System With DFIG-Based Wind Farm: LMI Approach.
    Venkateswaran R; Joo YH
    IEEE Trans Cybern; 2022 Jul; 52(7):5767-5777. PubMed ID: 33449894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines.
    Ebrahimkhani S
    ISA Trans; 2016 Jul; 63():343-354. PubMed ID: 27018145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-loop self-optimizing robust control of wind power generation with Doubly-Fed Induction Generator.
    Chen Q; Li Y; Seem JE
    ISA Trans; 2015 Sep; 58():409-20. PubMed ID: 26071967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real time simulation of nonlinear generalized predictive control for wind energy conversion system with nonlinear observer.
    Ouari K; Rekioua T; Ouhrouche M
    ISA Trans; 2014 Jan; 53(1):76-84. PubMed ID: 24021543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the performances of PI controller (2DOF) under linear and nonlinear operations of DFIG-based WECS: A simulation study.
    Desalegn B; Gebeyehu D; Tamrat B
    Heliyon; 2022 Dec; 8(12):e11912. PubMed ID: 36471838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decentralized Sampled-Data Control for Stochastic Disturbance in Interconnected Power Systems With PMSG-Based Wind Turbines.
    Shanmugam L; Palanimuthu K; Joo YH
    IEEE Trans Cybern; 2024 Jun; 54(6):3516-3525. PubMed ID: 37616135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance optimization of linear active disturbance rejection control approach by modified bat inspired algorithm for single area load frequency control concerning high wind power penetration.
    Ali S; Yang G; Huang C
    ISA Trans; 2018 Oct; 81():163-176. PubMed ID: 30072035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial neural network-based adaptive control for a DFIG-based WECS.
    Labdai S; Bounar N; Boulkroune A; Hemici B; Nezli L
    ISA Trans; 2022 Sep; 128(Pt B):171-180. PubMed ID: 34980482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital Controller Design via LMIs for Direct-Driven Surface Mounted PMSG-Based Wind Energy Conversion System.
    Mani P; Lee JH; Kang KW; Joo YH
    IEEE Trans Cybern; 2020 Jul; 50(7):3056-3067. PubMed ID: 31295139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sampled-data controller scheme for multi-agent systems and its Application to circuit network.
    Stephen A; Karthikeyan R; Sowmiya C; Raja R; Agarwal RP
    Neural Netw; 2024 Feb; 170():506-520. PubMed ID: 38043371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PSO-GSA based fuzzy sliding mode controller for DFIG-based wind turbine.
    Bounar N; Labdai S; Boulkroune A
    ISA Trans; 2019 Feb; 85():177-188. PubMed ID: 30389242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delay-dependent stability analysis and stabilization for discrete-time fuzzy systems with state delay: a fuzzy Lyapunov-Krasovskii functional approach.
    Wu HN
    IEEE Trans Syst Man Cybern B Cybern; 2006 Aug; 36(4):954-62. PubMed ID: 16903379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of systems with interval time-varying delay based on delay decomposing approach.
    Qian W; Yuan M; Wang L; Bu X; Yang J
    ISA Trans; 2017 Sep; 70():1-6. PubMed ID: 28587720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipativity Analysis for T-S Fuzzy System Under Memory Sampled-Data Control.
    Ge C; Park JH; Hua C; Guan X
    IEEE Trans Cybern; 2021 Feb; 51(2):961-969. PubMed ID: 31199284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal low voltage ride through of wind turbine doubly fed induction generator based on bonobo optimization algorithm.
    Mostafa MA; El-Hay EA; Elkholy MM
    Sci Rep; 2023 May; 13(1):7778. PubMed ID: 37179378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doubly fed induction generator wind turbines with fuzzy controller: a survey.
    Sathiyanarayanan JS; Kumar AS
    ScientificWorldJournal; 2014; 2014():252645. PubMed ID: 25028677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive hybrid intelligent MPPT controller to approximate effectual wind speed and optimal rotor speed of variable speed wind turbine.
    Sitharthan R; Karthikeyan M; Sundar DS; Rajasekaran S
    ISA Trans; 2020 Jan; 96():479-489. PubMed ID: 31202532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust
    Chen H; Zhang Z; Wang H
    Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20160934. PubMed ID: 28484336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deadbeat-fuzzy controller for the power control of a Doubly Fed Induction Generator based wind power system.
    Rocha-Osorio CM; Solís-Chaves JS; Rodrigues LL; Puma JLA; Sguarezi Filho AJ
    ISA Trans; 2019 May; 88():258-267. PubMed ID: 30545774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time Neural Inverse Optimal Control for Low-Voltage Rid-Through enhancement of Double Fed Induction Generator based Wind Turbines.
    Djilali L; Sanchez EN; Ornelas-Tellez F; Ruz-Hernandez JA; Ricalde LJ
    ISA Trans; 2021 Jul; 113():111-126. PubMed ID: 32434665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.