These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33449901)

  • 1. Impedance Variation and Learning Strategies in Human-Robot Interaction.
    Sharifi M; Zakerimanesh A; Mehr JK; Torabi A; Mushahwar VK; Tavakoli M
    IEEE Trans Cybern; 2022 Jul; 52(7):6462-6475. PubMed ID: 33449901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-order control barrier functions-based impedance control of a robotic manipulator with time-varying output constraints.
    Wang H; Peng J; Zhang F; Zhang H; Wang Y
    ISA Trans; 2022 Oct; 129(Pt B):361-369. PubMed ID: 35190194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Interaction Control of Compliant Robots Using Impedance Learning.
    Sun T; Yang J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear time delay estimation based model reference adaptive impedance control for an upper-limb human-robot interaction.
    Omrani J; Moghaddam MM
    Proc Inst Mech Eng H; 2022 Mar; 236(3):385-398. PubMed ID: 34720012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.
    Chang PH; Kang SH
    J Neurosci Methods; 2010 May; 189(1):97-112. PubMed ID: 20298718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain emotional learning impedance control of uncertain nonlinear systems with time delay: Experiments on a hybrid elastic joint robot in telesurgery.
    Souzanchi-K M; Akbarzadeh-T MR
    Comput Biol Med; 2021 Nov; 138():104786. PubMed ID: 34560502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human-robot collaborative task planning using anticipatory brain responses.
    Ehrlich SK; Dean-Leon E; Tacca N; Armleder S; Dimova-Edeleva V; Cheng G
    PLoS One; 2023; 18(7):e0287958. PubMed ID: 37432954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance and admittance control for respiratory-motion compensation during robotic needle insertion - a preliminary test.
    Kim YJ; Seo JH; Kim HR; Kim KG
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 27915466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on robot force control based on the GMM/GMR algorithm fusing different compensation strategies.
    Xiao M; Zhang X; Zhang T; Chen S; Zou Y; Wu W
    Front Neurorobot; 2024; 18():1290853. PubMed ID: 38348018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repetitive Impedance Learning-Based Physically Human-Robot Interactive Control.
    Sun T; Yang J; Pan Y; Yu H
    IEEE Trans Neural Netw Learn Syst; 2023 Feb; PP():. PubMed ID: 37027552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
    Modares H; Ranatunga I; Lewis FL; Popa DO
    IEEE Trans Cybern; 2016 Mar; 46(3):655-67. PubMed ID: 25823055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Impedance Control of Bioinspired Motion Robotic Manipulators: An Overview.
    Al-Shuka HFN; Leonhardt S; Zhu WH; Song R; Ding C; Li Y
    Appl Bionics Biomech; 2018; 2018():8203054. PubMed ID: 30420899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Position Based Impedance Control Strategy for a Lower Limb Rehabilitation Robot.
    Liang X; Wang W; Hou ZG; Ren S; Wang J; Shi W; Peng L; Su T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():437-441. PubMed ID: 31945932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive-Constrained Impedance Control for Human-Robot Co-Transportation.
    Yu X; Li B; He W; Feng Y; Cheng L; Silvestre C
    IEEE Trans Cybern; 2022 Dec; 52(12):13237-13249. PubMed ID: 34570713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognition-based variable admittance control for active compliance in flexible manipulation of heavy objects with a power-assist robotic system.
    Mizanoor Rahman SM; Ikeura R
    Robotics Biomim; 2018; 5(1):7. PubMed ID: 30524934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human arm endpoint-impedance in rhythmic human-robot interaction exhibits cyclic variations.
    Fortineau V; Siegler IA; Makarov M; Rodriguez-Ayerbe P
    PLoS One; 2023; 18(12):e0295640. PubMed ID: 38096319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training strategies for a lower limb rehabilitation robot based on impedance control.
    Hu J; Hou Z; Zhang F; Chen Y; Li P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6032-5. PubMed ID: 23367304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impedance Control for Robotic Rehabilitation: A Robust Markovian Approach.
    Jutinico AL; Jaimes JC; Escalante FM; Perez-Ibarra JC; Terra MH; Siqueira AAG
    Front Neurorobot; 2017; 11():43. PubMed ID: 28883790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration.
    Yu X; He W; Li Y; Xue C; Li J; Zou J; Yang C
    IEEE Trans Cybern; 2021 Apr; 51(4):1822-1834. PubMed ID: 31647450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.