These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33450129)

  • 61. Amorphous metal-organic frameworks.
    Bennett TD; Cheetham AK
    Acc Chem Res; 2014 May; 47(5):1555-62. PubMed ID: 24707980
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Lanthanide-Functionalized Metal-Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing.
    Yan B
    Acc Chem Res; 2017 Nov; 50(11):2789-2798. PubMed ID: 28984437
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Charge Transfer-Induced Molecular Hole Doping into Thin Film of Metal-Organic Frameworks.
    Lee DY; Kim EK; Shrestha NK; Boukhvalov DW; Lee JK; Han SH
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18501-7. PubMed ID: 26226050
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Facile Grinding Method for the Synthesis of 3D Ag Metal-Organic Frameworks (MOFs) Containing Ag
    Zhao X; Gong L; Wang C; Wang C; Yu K; Zhou B
    Chemistry; 2020 Apr; 26(20):4613-4619. PubMed ID: 32039508
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Redox Tuning in Crystalline and Electronic Structure of Bimetal-Organic Frameworks Derived Cobalt/Nickel Boride/Sulfide for Boosted Faradaic Capacitance.
    Wang Q; Luo Y; Hou R; Zaman S; Qi K; Liu H; Park HS; Xia BY
    Adv Mater; 2019 Dec; 31(51):e1905744. PubMed ID: 31702854
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal-Organic Frameworks for Alcohol Oxidation.
    Wang X; Zhang X; Li P; Otake KI; Cui Y; Lyu J; Krzyaniak MD; Zhang Y; Li Z; Liu J; Buru CT; Islamoglu T; Wasielewski MR; Li Z; Farha OK
    J Am Chem Soc; 2019 May; 141(20):8306-8314. PubMed ID: 31083934
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Recent Advances in Micro-/Nanostructured Metal-Organic Frameworks towards Photonic and Electronic Applications.
    Yang X; Lin X; Zhao YS; Yan D
    Chemistry; 2018 May; 24(25):6484-6493. PubMed ID: 29337380
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Postsynthetic Modification: An Enabling Technology for the Advancement of Metal-Organic Frameworks.
    Kalaj M; Cohen SM
    ACS Cent Sci; 2020 Jul; 6(7):1046-1057. PubMed ID: 32724840
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements.
    Dolgopolova EA; Rice AM; Martin CR; Shustova NB
    Chem Soc Rev; 2018 Jul; 47(13):4710-4728. PubMed ID: 29546889
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Automated Graph Neural Networks Accelerate the Screening of Optoelectronic Properties of Metal-Organic Frameworks.
    Zhang Z
    J Phys Chem Lett; 2023 Feb; 14(5):1239-1245. PubMed ID: 36716343
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock.
    Zhou X; Miao Y; Suslick KS; Dlott DD
    Acc Chem Res; 2020 Dec; 53(12):2806-2815. PubMed ID: 32935969
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal-Organic Framework Photophysics.
    Deria P; Yu J; Smith T; Balaraman RP
    J Am Chem Soc; 2017 Apr; 139(16):5973-5983. PubMed ID: 28385020
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Solid-Solution Approach for Redox Active Metal-Organic Frameworks with Tunable Redox Conductivity.
    Mohammad-Pour GS; Hatfield KO; Fairchild DC; Hernandez-Burgos K; Rodríguez-López J; Uribe-Romo FJ
    J Am Chem Soc; 2019 Dec; 141(51):19978-19982. PubMed ID: 31789028
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structural Engineering of Low-Dimensional Metal-Organic Frameworks: Synthesis, Properties, and Applications.
    Liu W; Yin R; Xu X; Zhang L; Shi W; Cao X
    Adv Sci (Weinh); 2019 Jun; 6(12):1802373. PubMed ID: 31380160
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Band Alignment as the Method for Modifying Electronic Structure of Metal-Organic Frameworks.
    Syzgantseva MA; Stepanov NF; Syzgantseva OA
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17611-17619. PubMed ID: 32208619
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rapid Generation of Hierarchically Porous Metal-Organic Frameworks through Laser Photolysis.
    Wang KY; Feng L; Yan TH; Wu S; Joseph EA; Zhou HC
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11349-11354. PubMed ID: 32243687
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs).
    Deng X; Li Z; García H
    Chemistry; 2017 Aug; 23(47):11189-11209. PubMed ID: 28503763
    [TBL] [Abstract][Full Text] [Related]  

  • 78. 2D metal-organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications.
    Xue Y; Zhao G; Yang R; Chu F; Chen J; Wang L; Huang X
    Nanoscale; 2021 Feb; 13(7):3911-3936. PubMed ID: 33595021
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks.
    Feng L; Yuan S; Zhang LL; Tan K; Li JL; Kirchon A; Liu LM; Zhang P; Han Y; Chabal YJ; Zhou HC
    J Am Chem Soc; 2018 Feb; 140(6):2363-2372. PubMed ID: 29345141
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions.
    Allendorf MD; Schwartzberg A; Stavila V; Talin AA
    Chemistry; 2011 Oct; 17(41):11372-88. PubMed ID: 21932243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.