BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33450176)

  • 1. Recent developments of human monocarboxylate transporter (hMCT) inhibitors as anticancer agents.
    Wu P; Zhou Y; Guo Y; Zhang SL; Tam KY
    Drug Discov Today; 2021 Mar; 26(3):836-844. PubMed ID: 33450176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease.
    Felmlee MA; Jones RS; Rodriguez-Cruz V; Follman KE; Morris ME
    Pharmacol Rev; 2020 Apr; 72(2):466-485. PubMed ID: 32144120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocarboxylate transporter 1 and 4 inhibitors as potential therapeutics for treating solid tumours: A review with structure-activity relationship insights.
    Puri S; Juvale K
    Eur J Med Chem; 2020 Aug; 199():112393. PubMed ID: 32388280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Holistic Evolutionary and 3D Pharmacophore Modelling Study Provides Insights into the Metabolism, Function, and Substrate Selectivity of the Human Monocarboxylate Transporter 4 (hMCT4).
    Papakonstantinou E; Vlachakis D; Thireou T; Vlachoyiannopoulos PG; Eliopoulos E
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MCT4 as a potential therapeutic target for metastatic gastric cancer with peritoneal carcinomatosis.
    Lee JY; Lee I; Chang WJ; Ahn SM; Lim SH; Kim HS; Yoo KH; Jung KS; Song HN; Cho JH; Kim SY; Kim KM; Lee S; Kim ST; Park SH; Lee J; Park JO; Park YS; Lim HY; Kang WK
    Oncotarget; 2016 Jul; 7(28):43492-43503. PubMed ID: 27224918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine 159 delineates a hinge region of the alternating access monocarboxylate transporter 1 and is targeted by cysteine-modifying inhibitors.
    Köpnick AL; Geistlinger K; Beitz E
    FEBS J; 2021 Oct; 288(20):6052-6062. PubMed ID: 33999492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy.
    Pertega-Gomes N; Felisbino S; Massie CE; Vizcaino JR; Coelho R; Sandi C; Simoes-Sousa S; Jurmeister S; Ramos-Montoya A; Asim M; Tran M; Oliveira E; Lobo da Cunha A; Maximo V; Baltazar F; Neal DE; Fryer LG
    J Pathol; 2015 Aug; 236(4):517-30. PubMed ID: 25875424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study.
    Mathupala SP; Parajuli P; Sloan AE
    Neurosurgery; 2004 Dec; 55(6):1410-9; discussion 1419. PubMed ID: 15574223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Anticancer Activity of AZD3965: A Systematic Review.
    Silva A; Antunes B; Batista A; Pinto-Ribeiro F; Baltazar F; Afonso J
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters.
    Li X; Yu X; Dai D; Song X; Xu W
    Oncotarget; 2016 Apr; 7(17):23141-55. PubMed ID: 27009812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates.
    Wang N; Jiang X; Zhang S; Zhu A; Yuan Y; Xu H; Lei J; Yan C
    Cell; 2021 Jan; 184(2):370-383.e13. PubMed ID: 33333023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monocarboxylate transporters in cancer.
    Payen VL; Mina E; Van Hée VF; Porporato PE; Sonveaux P
    Mol Metab; 2020 Mar; 33():48-66. PubMed ID: 31395464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate transporters as therapeutic targets in cancer and inflammatory diseases.
    Pucino V; Cucchi D; Mauro C
    Expert Opin Ther Targets; 2018 Sep; 22(9):735-743. PubMed ID: 30106309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.
    Ganapathy-Kanniappan S; Kunjithapatham R; Geschwind JF
    Anticancer Res; 2013 Jan; 33(1):13-20. PubMed ID: 23267123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters.
    Marchiq I; Pouysségur J
    J Mol Med (Berl); 2016 Feb; 94(2):155-71. PubMed ID: 26099350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle.
    Bonen A; Heynen M; Hatta H
    Appl Physiol Nutr Metab; 2006 Feb; 31(1):31-9. PubMed ID: 16604139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterocyclic and non-heterocyclic arena of monocarboxylate transporter inhibitors to battle tumorigenesis.
    Manisha DS; Ratheesh AK; Benny S; Presanna AT
    Chem Biol Drug Des; 2023 Dec; 102(6):1604-1617. PubMed ID: 37688395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of monocarboxylate transporters in human cancers: state of the art.
    Pinheiro C; Longatto-Filho A; Azevedo-Silva J; Casal M; Schmitt FC; Baltazar F
    J Bioenerg Biomembr; 2012 Feb; 44(1):127-39. PubMed ID: 22407107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monocarboxylate transporters as targets and mediators in cancer therapy response.
    Baltazar F; Pinheiro C; Morais-Santos F; Azevedo-Silva J; Queirós O; Preto A; Casal M
    Histol Histopathol; 2014 Dec; 29(12):1511-24. PubMed ID: 24921258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells.
    Amorim R; Pinheiro C; Miranda-Gonçalves V; Pereira H; Moyer MP; Preto A; Baltazar F
    Cancer Lett; 2015 Aug; 365(1):68-78. PubMed ID: 26021766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.