These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
609 related articles for article (PubMed ID: 33450459)
21. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Aditya NP; Yang H; Kim S; Ko S Colloids Surf B Biointerfaces; 2015 Mar; 127():114-21. PubMed ID: 25660094 [TBL] [Abstract][Full Text] [Related]
22. In Vitro Dissolution, Cellular Membrane Permeability, and Anti-Inflammatory Response of Resveratrol-Encapsulated Mesoporous Silica Nanoparticles. Juère E; Florek J; Bouchoucha M; Jambhrunkar S; Wong KY; Popat A; Kleitz F Mol Pharm; 2017 Dec; 14(12):4431-4441. PubMed ID: 29094948 [TBL] [Abstract][Full Text] [Related]
23. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Mao KL; Fan ZL; Yuan JD; Chen PP; Yang JJ; Xu J; ZhuGe DL; Jin BH; Zhu QY; Shen BX; Sohawon Y; Zhao YZ; Xu HL Colloids Surf B Biointerfaces; 2017 Dec; 160():704-714. PubMed ID: 29035818 [TBL] [Abstract][Full Text] [Related]
24. Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study. Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ J Agric Food Chem; 2018 Feb; 66(6):1488-1497. PubMed ID: 29378117 [TBL] [Abstract][Full Text] [Related]
25. Linear-dendrimer type methoxy-poly (ethylene glycol)-b-poly (ε-caprolactone) copolymer micelles for the delivery of curcumin. Song Z; Zhu W; Song J; Wei P; Yang F; Liu N; Feng R Drug Deliv; 2015 Jan; 22(1):58-68. PubMed ID: 24725028 [TBL] [Abstract][Full Text] [Related]
26. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Zhang J; Li J; Shi Z; Yang Y; Xie X; Lee SM; Wang Y; Leong KW; Chen M Acta Biomater; 2017 Aug; 58():349-364. PubMed ID: 28455219 [TBL] [Abstract][Full Text] [Related]
27. Mechanisms of Drug Solubility Enhancement Induced by β-Lactoglobulin-Based Amorphous Solid Dispersions. Zhuo X; Sener Z; Kabedev A; Zhao M; Arnous A; Leng D; Foderà V; Löbmann K Mol Pharm; 2023 Oct; 20(10):5206-5213. PubMed ID: 37669430 [TBL] [Abstract][Full Text] [Related]
28. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers. Gao M; Chen C; Fan A; Zhang J; Kong D; Wang Z; Zhao Y Nanotechnology; 2015 Jul; 26(27):275101. PubMed ID: 26066389 [TBL] [Abstract][Full Text] [Related]
29. Design and in vitro characterization of multistage silicon-PLGA budesonide particles for inflammatory bowel disease. Leonard F; Srinivasan S; Liu X; Collnot EM; Ferrari M; Lehr CM; Godin B Eur J Pharm Biopharm; 2020 Jun; 151():61-72. PubMed ID: 32283213 [TBL] [Abstract][Full Text] [Related]
30. Nanoparticles based on oleate alginate ester as curcumin delivery system. Raja MA; Liu C; Huang Z Curr Drug Deliv; 2015; 12(5):613-27. PubMed ID: 25963307 [TBL] [Abstract][Full Text] [Related]
31. A novel chitosan-citric acid crosslinked beta-cyclodextrin nanocarriers for insoluble drug delivery. Karpkird T; Manaprasertsak A; Penkitti A; Sinthuvanich C; Singchuwong T; Leepasert T Carbohydr Res; 2020 Dec; 498():108184. PubMed ID: 33189031 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and anticervical cancer activity of novel pH responsive micelles for oral curcumin delivery. Sajomsang W; Gonil P; Saesoo S; Ruktanonchai UR; Srinuanchai W; Puttipipatkhachorn S Int J Pharm; 2014 Dec; 477(1-2):261-72. PubMed ID: 25455774 [TBL] [Abstract][Full Text] [Related]
34. Maintained particulate integrity of soy protein nanoparticles during gastrointestinal digestion via genipin crosslinking enhancing stability and bioavailability of curcumin. Yuan D; Qin L; Niu Z; Zhou F; Zhao M Int J Biol Macromol; 2024 Aug; 274(Pt 2):133213. PubMed ID: 38889834 [TBL] [Abstract][Full Text] [Related]
35. Organogel Nanoparticles as a New Way to Improve Oral Bioavailability of Poorly Soluble Compounds. Martin B; Garrait G; Beyssac E; Goudouneche D; Perez E; Franceschi S Pharm Res; 2020 May; 37(6):92. PubMed ID: 32394200 [TBL] [Abstract][Full Text] [Related]
36. Changing the pH of the external aqueous phase may modulate protein entrapment and delivery from poly(lactide-co-glycolide) microspheres prepared by a w/o/w solvent evaporation method. Leo E; Pecquet S; Rojas J; Couvreur P; Fattal E J Microencapsul; 1998; 15(4):421-30. PubMed ID: 9651864 [TBL] [Abstract][Full Text] [Related]
37. Solubilization mechanism of self-assembled walnut protein nanoparticles and curcumin encapsulation. Lv J; Zhou X; Wang W; Cheng Y; Wang F J Sci Food Agric; 2023 Aug; 103(10):4908-4918. PubMed ID: 36929026 [TBL] [Abstract][Full Text] [Related]
38. Gastro-protective protein-silica nanoparticles formulation for oral drug delivery: In vitro release, cytotoxicity and mitochondrial activity. Juère E; Del Favero G; Masse F; Marko D; Popat A; Florek J; Caillard R; Kleitz F Eur J Pharm Biopharm; 2020 Jun; 151():171-180. PubMed ID: 32302657 [TBL] [Abstract][Full Text] [Related]
39. Enhanced dissolution rate of nimodipine through β-lactoglobulin based formulation. Leng D; Bulduk B; Anlahr J; Müllers W; Löbmann K Int J Pharm; 2023 Mar; 635():122693. PubMed ID: 36754186 [TBL] [Abstract][Full Text] [Related]
40. Bifunctional Succinylated ε-Polylysine-Coated Mesoporous Silica Nanoparticles for pH-Responsive and Intracellular Drug Delivery Targeting the Colon. Nguyen CT; Webb RI; Lambert LK; Strounina E; Lee EC; Parat MO; McGuckin MA; Popat A; Cabot PJ; Ross BP ACS Appl Mater Interfaces; 2017 Mar; 9(11):9470-9483. PubMed ID: 28252278 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]