BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33450508)

  • 1. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress.
    Sanjari S; Shobbar ZS; Ghanati F; Afshari-Behbahanizadeh S; Farajpour M; Jokar M; Khazaei A; Shahbazi M
    Plant Physiol Biochem; 2021 Feb; 159():383-391. PubMed ID: 33450508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance.
    Islam MA; Du H; Ning J; Ye H; Xiong L
    Plant Mol Biol; 2009 Jul; 70(4):443-56. PubMed ID: 19322663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry.
    Busta L; Schmitz E; Kosma DK; Schnable JC; Cahoon EB
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface wax esters contribute to drought tolerance in Arabidopsis.
    Patwari P; Salewski V; Gutbrod K; Kreszies T; Dresen-Scholz B; Peisker H; Steiner U; Meyer AJ; Schreiber L; Dörmann P
    Plant J; 2019 May; 98(4):727-744. PubMed ID: 30729606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation.
    Goche T; Shargie NG; Cummins I; Brown AP; Chivasa S; Ngara R
    Sci Rep; 2020 Jul; 10(1):11835. PubMed ID: 32678202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical profiles of cuticular waxes on various organs of Sorghum bicolor and their antifungal activities.
    Xiao Y; Li X; Yao L; Xu D; Li Y; Zhang X; Li Z; Xiao Q; Ni Y; Guo Y
    Plant Physiol Biochem; 2020 Oct; 155():596-604. PubMed ID: 32846395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression analysis of drought tolerance and cuticular wax biosynthesis in diploid and tetraploid induced wallflowers.
    Fakhrzad F; Jowkar A
    BMC Plant Biol; 2024 Apr; 24(1):330. PubMed ID: 38664602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheat flag leaf epicuticular wax morphology and composition in response to moderate drought stress are revealed by SEM, FTIR-ATR and synchrotron X-ray spectroscopy.
    Willick IR; Lahlali R; Vijayan P; Muir D; Karunakaran C; Tanino KK
    Physiol Plant; 2018 Mar; 162(3):316-332. PubMed ID: 28857201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct Preflowering Drought Tolerance Strategies of
    Ogden AJ; Abdali S; Engbrecht KM; Zhou M; Handakumbura PP
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of
    Lokesh U; Venkatesh B; Kiranmai K; Nareshkumar A; Amarnathareddy V; Rao GL; Anthony Johnson AM; Pandurangaiah M; Sudhakar C
    Front Plant Sci; 2018; 9():1869. PubMed ID: 30687340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping QTLs and Identification of Genes Associated with Drought Resistance in Sorghum.
    Harris-Shultz KR; Hayes CM; Knoll JE
    Methods Mol Biol; 2019; 1931():11-40. PubMed ID: 30652280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yellow nutsedge WRI4-like gene improves drought tolerance in Arabidopsis thaliana by promoting cuticular wax biosynthesis.
    Cheng C; Hu S; Han Y; Xia D; Huang BL; Wu W; Hussain J; Zhang X; Huang B
    BMC Plant Biol; 2020 Oct; 20(1):498. PubMed ID: 33129252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between leaf epicuticular wax composition and structure, physio-biochemical traits and drought resistance in glaucous and non-glaucous near-isogenic lines of rye.
    Laskoś K; Czyczyło-Mysza IM; Dziurka M; Noga A; Góralska M; Bartyzel J; Myśków B
    Plant J; 2021 Oct; 108(1):93-119. PubMed ID: 34288188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poa pratensis ECERIFERUM1 (PpCER1) is involved in wax alkane biosynthesis and plant drought tolerance.
    Wang D; Ni Y; Liao L; Xiao Y; Guo Y
    Plant Physiol Biochem; 2021 Feb; 159():312-321. PubMed ID: 33421907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative analysis of the cuticular lipidome and transcriptome of Sorghum bicolor reveals cultivar differences in drought tolerance.
    Zhang X; Ni Y; Xu D; Busta L; Xiao Y; Jetter R; Guo Y
    Plant Physiol Biochem; 2021 Jun; 163():285-295. PubMed ID: 33887646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of drought on wheat leaf cuticle properties.
    Bi H; Kovalchuk N; Langridge P; Tricker PJ; Lopato S; Borisjuk N
    BMC Plant Biol; 2017 May; 17(1):85. PubMed ID: 28482800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes.
    Chen M; Zhu X; Zhang Y; Du Z; Chen X; Kong X; Sun W; Chen C
    Sci Rep; 2020 Apr; 10(1):6696. PubMed ID: 32317754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential responses of sorghum genotypes to drought stress revealed by physio-chemical and transcriptional analysis.
    Rajarajan K; Ganesamurthy K; Raveendran M; Jeyakumar P; Yuvaraja A; Sampath P; Prathima PT; Senthilraja C
    Mol Biol Rep; 2021 Mar; 48(3):2453-2462. PubMed ID: 33755850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE.
    Fracasso A; Trindade LM; Amaducci S
    BMC Plant Biol; 2016 May; 16(1):115. PubMed ID: 27208977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit.
    Kim KS; Park SH; Jenks MA
    J Plant Physiol; 2007 Sep; 164(9):1134-43. PubMed ID: 16904233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.