BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33450514)

  • 1. Arsenic release and transport during oxidative dissolution of spatially-distributed sulfide minerals.
    Battistel M; Stolze L; Muniruzzaman M; Rolle M
    J Hazard Mater; 2021 May; 409():124651. PubMed ID: 33450514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative Dissolution of Arsenic-Bearing Sulfide Minerals in Groundwater: Impact of Hydrochemical and Hydrodynamic Conditions on Arsenic Release and Surface Evolution.
    Stolze L; Battistel M; Rolle M
    Environ Sci Technol; 2022 Apr; 56(8):5049-5061. PubMed ID: 35377625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions.
    Rathod J; Jean JS; Jiang WT; Huang IH; Liu BH; Lee YC
    Sci Total Environ; 2019 Jun; 669():527-539. PubMed ID: 30884274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation.
    Zhang DR; Chen HR; Xia JL; Nie ZY; Zhang RY; Schippers A; Shu WS; Qian LX
    Water Res; 2021 Sep; 203():117539. PubMed ID: 34407485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenopyrite dissolution in circumneutral oxic environments: The effect of pyrophosphate and dissolved Mn(III).
    Wang X; Shu Z; He H; Zhou M; Lu X; Wang J; Zhang L; Pan Z; Wang Z
    Water Res; 2023 Feb; 230():119595. PubMed ID: 36642031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Schupp D; Jun YS
    Environ Sci Technol; 2014 Apr; 48(8):4395-405. PubMed ID: 24621369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial reductive transformation of iron-rich tailings in a column reactor and its environmental implications to arsenic reactive transport in mining tailings.
    Ouyang B; Lu X; Li J; Liu H
    Sci Total Environ; 2019 Jun; 670():1008-1018. PubMed ID: 31018416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization.
    Zhang DR; Chen HR; Xia JL; Nie ZY; Fan XL; Liu HC; Zheng L; Zhang LJ; Yang HY
    J Hazard Mater; 2020 Feb; 384():121359. PubMed ID: 31635821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thioarsenate formation upon dissolution of orpiment and arsenopyrite.
    Suess E; Planer-Friedrich B
    Chemosphere; 2012 Nov; 89(11):1390-8. PubMed ID: 22771176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The whole genome insight on condition-specific redox activity and arsenopyrite interaction promoting As-mobilization by strain Lysinibacillus sp. B2A1.
    Rathod J; Dhanani AS; Jean JS; Jiang WT
    J Hazard Mater; 2019 Feb; 364():671-681. PubMed ID: 30399550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic release from arsenopyrite oxidative dissolution in the presence of citrate under UV irradiation.
    Hong J; Liu L; Tan W; Qiu G
    Sci Total Environ; 2020 Jul; 726():138429. PubMed ID: 32305755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of rainwater-borne hydrogen peroxide in the release of arsenic from arsenopyrite.
    Ma Y; Qin Y; Lin C
    Chemosphere; 2014 May; 103():349-53. PubMed ID: 24315179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial mobilization of arsenic from iron-bearing clay mineral through iron, arsenate, and simultaneous iron-arsenate reduction pathways.
    Zhao Z; Meng Y; Yuan Q; Wang Y; Lin L; Liu W; Luan F
    Sci Total Environ; 2021 Apr; 763():144613. PubMed ID: 33383508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobilization of arsenic from As-containing iron minerals under irrigation: Effects of exogenous substances, redox condition, and intermittent flow.
    Cai D; Kong S; Shao Y; Liu J; Liu R; Wei X; Bai B; Werner D; Gao X; Li C
    J Hazard Mater; 2022 Oct; 440():129736. PubMed ID: 36027753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-Based Interpretation of Groundwater Arsenic Mobility during in Situ Reductive Transformation of Ferrihydrite.
    Stolze L; Zhang D; Guo H; Rolle M
    Environ Sci Technol; 2019 Jun; 53(12):6845-6854. PubMed ID: 31117535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR).
    Neil CW; Jason Todd M; Jeffrey Yang Y
    Environ Geochem Health; 2018 Dec; 40(6):2453-2464. PubMed ID: 29696495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes.
    Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous influence of indigenous microorganism along with abiotic factors controlling arsenic mobilization in Brahmaputra floodplain, India.
    Sathe SS; Mahanta C; Mishra P
    J Contam Hydrol; 2018 Jun; 213():1-14. PubMed ID: 29598853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic pollution sources.
    Garelick H; Jones H; Dybowska A; Valsami-Jones E
    Rev Environ Contam Toxicol; 2008; 197():17-60. PubMed ID: 18982996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO.
    Rhine ED; Onesios KM; Serfes ME; Reinfelder JR; Young LY
    Environ Sci Technol; 2008 Mar; 42(5):1423-9. PubMed ID: 18441783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.