These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33450521)

  • 1. Impact of the reperfusion status for predicting the final stroke infarct using deep learning.
    Debs N; Cho TH; Rousseau D; Berthezène Y; Buisson M; Eker O; Mechtouff L; Nighoghossian N; Ovize M; Frindel C
    Neuroimage Clin; 2021; 29():102548. PubMed ID: 33450521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging.
    Yu Y; Xie Y; Thamm T; Gong E; Ouyang J; Huang C; Christensen S; Marks MP; Lansberg MG; Albers GW; Zaharchuk G
    JAMA Netw Open; 2020 Mar; 3(3):e200772. PubMed ID: 32163165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network.
    Nazari-Farsani S; Yu Y; Duarte Armindo R; Lansberg M; Liebeskind DS; Albers G; Christensen S; Levin CS; Zaharchuk G
    Neuroimage Clin; 2023; 37():103278. PubMed ID: 36481696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Hypoperfusion Lesion and Target Mismatch in Stroke from Diffusion-weighted MRI Using Deep Learning.
    Yu Y; Christensen S; Ouyang J; Scalzo F; Liebeskind DS; Lansberg MG; Albers GW; Zaharchuk G
    Radiology; 2023 Apr; 307(1):e220882. PubMed ID: 36472536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue at Risk and Ischemic Core Estimation Using Deep Learning in Acute Stroke.
    Yu Y; Xie Y; Thamm T; Gong E; Ouyang J; Christensen S; Marks MP; Lansberg MG; Albers GW; Zaharchuk G
    AJNR Am J Neuroradiol; 2021 Jun; 42(6):1030-1037. PubMed ID: 33766823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning.
    Nielsen A; Hansen MB; Tietze A; Mouridsen K
    Stroke; 2018 Jun; 49(6):1394-1401. PubMed ID: 29720437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Stroke Infarct Growth Rates by Baseline Perfusion Imaging.
    Wouters A; Robben D; Christensen S; Marquering HA; Roos YBWEM; van Oostenbrugge RJ; van Zwam WH; Dippel DWJ; Majoie CBLM; Schonewille WJ; van der Lugt A; Lansberg M; Albers GW; Suetens P; Lemmens R
    Stroke; 2022 Feb; 53(2):569-577. PubMed ID: 34587794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ISP-Net: Fusing features to predict ischemic stroke infarct core on CT perfusion maps.
    Zhu H; Chen Y; Tang T; Ma G; Zhou J; Zhang J; Lu S; Wu F; Luo L; Liu S; Ju S; Shi H
    Comput Methods Programs Biomed; 2022 Mar; 215():106630. PubMed ID: 35063712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perfusion Imaging Collateral Scores Predict Infarct Growth in Non-Reperfused DEFUSE 3 Patients.
    MacLellan A; Mlynash M; Kemp S; Ortega-Gutierrez S; Heit JJ; Marks MP; Lansberg MG; Albers GW;
    J Stroke Cerebrovasc Dis; 2022 Jan; 31(1):106208. PubMed ID: 34823091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal magnetic resonance perfusion thresholds identifying ischemic penumbra and infarct core: a Chinese population-based study.
    Zhang S; Tang H; Yu YN; Yan SQ; Parsons MW; Lou M
    CNS Neurosci Ther; 2015 Mar; 21(3):289-95. PubMed ID: 25476071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ischemic Core and Hypoperfusion Volumes Correlate With Infarct Size 24 Hours After Randomization in DEFUSE 3.
    Rao V; Christensen S; Yennu A; Mlynash M; Zaharchuk G; Heit J; Marks MP; Lansberg MG; Albers GW
    Stroke; 2019 Mar; 50(3):626-631. PubMed ID: 30727840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome.
    Wong KK; Cummock JS; Li G; Ghosh R; Xu P; Volpi JJ; Wong STC
    Stroke; 2022 Sep; 53(9):2896-2905. PubMed ID: 35545938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. U-net Models Based on Computed Tomography Perfusion Predict Tissue Outcome in Patients with Different Reperfusion Patterns.
    He Y; Luo Z; Zhou Y; Xue R; Li J; Hu H; Yan S; Chen Z; Wang J; Lou M
    Transl Stroke Res; 2022 Oct; 13(5):707-715. PubMed ID: 35043358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging.
    Moulton E; Valabregue R; Piotin M; Marnat G; Saleme S; Lapergue B; Lehericy S; Clarencon F; Rosso C
    J Cereb Blood Flow Metab; 2023 Feb; 43(2):198-209. PubMed ID: 36169033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized prediction of tissue outcome in acute ischemic stroke patients using diffusion- and perfusion-weighted MRI datasets.
    Grosser M; Gellißen S; Borchert P; Sedlacik J; Nawabi J; Fiehler J; Forkert ND
    PLoS One; 2020; 15(11):e0241917. PubMed ID: 33152045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfusion computer tomography: imaging and clinical validation in acute ischaemic stroke.
    Bivard A; Spratt N; Levi C; Parsons M
    Brain; 2011 Nov; 134(Pt 11):3408-16. PubMed ID: 22075524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model.
    Saha S; Pagnozzi A; Bourgeat P; George JM; Bradford D; Colditz PB; Boyd RN; Rose SE; Fripp J; Pannek K
    Neuroimage; 2020 Jul; 215():116807. PubMed ID: 32278897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue outcome prediction in hyperacute ischemic stroke: Comparison of machine learning models.
    Benzakoun J; Charron S; Turc G; Hassen WB; Legrand L; Boulouis G; Naggara O; Baron JC; Thirion B; Oppenheim C
    J Cereb Blood Flow Metab; 2021 Nov; 41(11):3085-3096. PubMed ID: 34159824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep symmetric three-dimensional convolutional neural networks for identifying acute ischemic stroke via diffusion-weighted images.
    Cui L; Han S; Qi S; Duan Y; Kang Y; Luo Y
    J Xray Sci Technol; 2021; 29(4):551-566. PubMed ID: 33967077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.