These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33450680)

  • 21. [Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Drvland Origins in Karst Cave Wetland].
    Jin ZJ; Zeng HH; Li Q; Cheng YP; Tang HF; Li M; Huang BF
    Huan Jing Ke Xue; 2016 Jan; 37(1):335-41. PubMed ID: 27078975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon budgets of wetland ecosystems in China.
    Xiao D; Deng L; Kim DG; Huang C; Tian K
    Glob Chang Biol; 2019 Jun; 25(6):2061-2076. PubMed ID: 30884086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.
    Means MM; Ahn C; Korol AR; Williams LD
    J Environ Manage; 2016 Jan; 165():133-139. PubMed ID: 26431640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of soil microbial necromass to SOC stocks during vegetation recovery in a subtropical karst ecosystem.
    Guo Z; Zhang X; Dungait JAJ; Green SM; Wen X; Quine TA
    Sci Total Environ; 2021 Mar; 761():143945. PubMed ID: 33360125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organic carbon storage in four ecosystem types in the karst region of southwestern China.
    Liu Y; Liu C; Wang S; Guo K; Yang J; Zhang X; Li G
    PLoS One; 2013; 8(2):e56443. PubMed ID: 23451047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: evidence from major elements and δ¹³C(DIC) in Nandong, Southwest China.
    Jiang Y
    J Contam Hydrol; 2013 Sep; 152():1-11. PubMed ID: 23803647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selected Bacteria Are Critical for Karst River Carbon Sequestration via Integrating Multi-omics and Hydrochemistry Data.
    Xu H; Xiao Q; Dai Y; Chen D; Zhang C; Jiang Y; Xie J
    Microb Ecol; 2023 Nov; 86(4):3043-3056. PubMed ID: 37831075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determinants of soil organic carbon sequestration and its contribution to ecosystem carbon sinks of planted forests.
    Wang S; Huang Y
    Glob Chang Biol; 2020 May; 26(5):3163-3173. PubMed ID: 32048403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands.
    Salimi S; Almuktar SAAAN; Scholz M
    J Environ Manage; 2021 May; 286():112160. PubMed ID: 33611067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Algal-bacterial consortium promotes carbon sink formation in saline environment.
    Gu W; Wu S; Liu X; Wang L; Wang X; Qiu Q; Wang G
    J Adv Res; 2024 Jun; 60():111-125. PubMed ID: 37597746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploration of the Implementation of Carbon Neutralization in the Field of Natural Resources under the Background of Sustainable Development-An Overview.
    Yang W; Min Z; Yang M; Yan J
    Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial and temporal changes of P and Ca distribution and fractionation in soil and sediment in a karst farmland-wetland system.
    Gao P; Liu Y; Wang Y; Liu X; Wang Z; Ma LQ
    Chemosphere; 2019 Apr; 220():644-650. PubMed ID: 30599322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatio-temporal study of carbon sequestration through piscicultural practice at East Kolkata Wetland.
    Pal S; Chattopadhyay B; Mukhopadhyay SK
    J Environ Biol; 2016 Sep; 37(5):965-71. PubMed ID: 29251883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of carbon limitation and carbon fertilization on karst lake-reservoir productivity.
    He H; Liu Z; Li D; Liu X; Han Y; Sun H; Zhao M; Shao M; Shi L; Hao P; Lai C
    Water Res; 2024 Sep; 261():122036. PubMed ID: 38981350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Carbon storage distribution characteristics of wetlands in China and its influencing factors.].
    Liu YN; Xi M; Zhang XL; Yu ZD; Kong FL
    Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2481-2489. PubMed ID: 31418251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Sources of Organic Carbon in the Surface Water of Lijiang River].
    Zhao HJ; Xiao Q; Wu X; Liu F; Miao Y; Jiang YJ
    Huan Jing Ke Xue; 2017 Aug; 38(8):3200-3208. PubMed ID: 29964927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of HCO
    Fan W; Liu Y; Xu X; Dong X; Wang H
    Plant Physiol Biochem; 2024 Apr; 209():108530. PubMed ID: 38520966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Convergence of carbon sink magnitude and water table depth in global wetlands.
    Li J; Jiang M; Pei J; Fang C; Li B; Nie M
    Ecol Lett; 2023 May; 26(5):797-804. PubMed ID: 36924007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China.
    Qin LT; Pang XR; Zeng HH; Liang YP; Mo LY; Wang DQ; Dai JF
    Sci Total Environ; 2020 Mar; 708():134552. PubMed ID: 31787280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of carbon and nutrient exports from different land uses in the aquatic carbon sequestration and eutrophication process.
    Bao Q; Liu Z; Zhao M; Hu Y; Li D; Han C; Zeng C; Chen B; Wei Y; Ma S; Wu Y; Zhang Y
    Sci Total Environ; 2022 Mar; 813():151917. PubMed ID: 34826459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.