These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33450799)

  • 1. Streptavidin-Decorated Algorithmic DNA Lattices Constructed by Substrate-Assisted Growth Method.
    Mitta SB; Han S; Vellampatti S; Tandon A; Shin J; Ha TH; Park SH
    ACS Biomater Sci Eng; 2018 Oct; 4(10):3617-3623. PubMed ID: 33450799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ternary representation of N (N = 1 or 2)-input and 1-output algorithmic self-assembly demonstrated by DNA.
    Park S; Tandon A; Cho HJ; Raza MT; Lee SJ; Chopade P; Ha TH; Park SH
    Nanotechnology; 2019 Nov; 31(8):085604. PubMed ID: 31689698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of elementary functions
    Raza MT; Tandon A; Park S; Lee S; Nguyen TBN; Vu THN; Jo S; Nam Y; Jeon S; Jeong JH; Park SH
    Nanoscale; 2021 Dec; 13(46):19376-19384. PubMed ID: 34812465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-Input/1-Output Logic Implementation Demonstrated by DNA Algorithmic Self-Assembly.
    Cho H; Mitta SB; Song Y; Son J; Park S; Ha TH; Park SH
    ACS Nano; 2018 May; 12(5):4369-4377. PubMed ID: 29683650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles.
    Kim J; Ha TH; Park SH
    Nanoscale; 2015 Aug; 7(29):12336-42. PubMed ID: 26147712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA lattice growth with single, double, and triple double-crossover boundaries by stepwise self-assembly.
    Raza MT; Tandon A; Park S; Lee S; Nguyen TBN; Vu THN; Park SH
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36881902
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Raza MT; Park SH
    ACS Omega; 2023 May; 8(17):15041-15051. PubMed ID: 37151505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and Configuration Analysis of Zelkova Serrata Lenticel-Like Patterns Generated through DNA Algorithmic Self-Assembly.
    Park S; Tandon A; Raza MT; Lee S; Nguyen TBN; Vu THN; Ha TH; Park SH
    ACS Appl Bio Mater; 2022 Jan; 5(1):97-104. PubMed ID: 35014830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithmic self-assembly of DNA Sierpinski triangles.
    Rothemund PW; Papadakis N; Winfree E
    PLoS Biol; 2004 Dec; 2(12):e424. PubMed ID: 15583715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2D DNA lattices assembled from DX-coupled tiles.
    Zhang W; Jiang C; Guo X; Muhammad Faran Ashraf Baig M; Ni C; Xiao SJ
    J Colloid Interface Sci; 2022 Jun; 616():499-508. PubMed ID: 35228046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of Arithmetic Calculations by DNA Tile-Based Algorithmic Self-Assembly.
    Tandon A; Song Y; Mitta SB; Yoo S; Park S; Lee S; Raza MT; Ha TH; Park SH
    ACS Nano; 2020 May; 14(5):5260-5267. PubMed ID: 32159938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two computational primitives for algorithmic self-assembly: copying and counting.
    Barish RD; Rothemund PW; Winfree E
    Nano Lett; 2005 Dec; 5(12):2586-92. PubMed ID: 16351220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale packing of DNA tiles into DNA macromolecular lattices.
    Baig MMFA; Gao X; Khan MA; Farid A; Zia AW; Wu H
    Int J Biol Macromol; 2022 Nov; 220():520-527. PubMed ID: 35988727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An information-bearing seed for nucleating algorithmic self-assembly.
    Barish RD; Schulman R; Rothemund PW; Winfree E
    Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6054-9. PubMed ID: 19321429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.
    Shi X; Lu W; Wang Z; Pan L; Cui G; Xu J; LaBean TH
    Nanotechnology; 2014 Feb; 25(7):075602. PubMed ID: 24451169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules.
    Mao C; LaBean TH; Relf JH; Seeman NC
    Nature; 2000 Sep; 407(6803):493-6. PubMed ID: 11028996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Configuration Analysis of a Lizard Skin-like Pattern Formed by DNA Self-Assembly.
    Tandon A; Raza MT; Park S; Lee S; Nguyen TBN; Vu THN; Kim S; Ha TH; Park SH
    ACS Omega; 2021 Oct; 6(41):27038-27044. PubMed ID: 34693123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern.
    Fujibayashi K; Hariadi R; Park SH; Winfree E; Murata S
    Nano Lett; 2008 Jul; 8(7):1791-7. PubMed ID: 18162000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy band gap and optical transition of metal ion modified double crossover DNA lattices.
    Dugasani SR; Ha T; Gnapareddy B; Choi K; Lee J; Kim B; Kim JH; Park SH
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17599-605. PubMed ID: 25247447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of DNA Origami Lattice Formation at Solid-Liquid Interfaces.
    Kielar C; Ramakrishnan S; Fricke S; Grundmeier G; Keller A
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44844-44853. PubMed ID: 30501167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.