These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 33450800)
21. Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Abdollahiyan P; Oroojalian F; Mokhtarzadeh A; de la Guardia M Biotechnol J; 2020 Dec; 15(12):e2000095. PubMed ID: 32869529 [TBL] [Abstract][Full Text] [Related]
22. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Rastogi P; Kandasubramanian B Biofabrication; 2019 Sep; 11(4):042001. PubMed ID: 31315105 [TBL] [Abstract][Full Text] [Related]
23. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Müller M; Becher J; Schnabelrauch M; Zenobi-Wong M Biofabrication; 2015 Aug; 7(3):035006. PubMed ID: 26260872 [TBL] [Abstract][Full Text] [Related]
24. Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineering. Setayeshmehr M; Hafeez S; van Blitterswijk C; Moroni L; Mota C; Baker MB Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33918892 [TBL] [Abstract][Full Text] [Related]
25. Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting. Wilson SA; Cross LM; Peak CW; Gaharwar AK ACS Appl Mater Interfaces; 2017 Dec; 9(50):43449-43458. PubMed ID: 29214803 [TBL] [Abstract][Full Text] [Related]
26. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Chimene D; Kaunas R; Gaharwar AK Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073 [TBL] [Abstract][Full Text] [Related]
27. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks. Luo Y; Lin X; Chen B; Wei X Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520 [TBL] [Abstract][Full Text] [Related]
28. A Study of the Printability of Alginate-Based Bioinks by 3D Bioprinting for Articular Cartilage Tissue Engineering. Gorroñogoitia I; Urtaza U; Zubiarrain-Laserna A; Alonso-Varona A; Zaldua AM Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054760 [TBL] [Abstract][Full Text] [Related]
29. 3D Bioprinting of Pectin-Cellulose Nanofibers Multicomponent Bioinks. Pitton M; Fiorati A; Buscemi S; Melone L; Farè S; Contessi Negrini N Front Bioeng Biotechnol; 2021; 9():732689. PubMed ID: 34926414 [TBL] [Abstract][Full Text] [Related]
30. A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry. Athirasala A; Tahayeri A; Thrivikraman G; França CM; Monteiro N; Tran V; Ferracane J; Bertassoni LE Biofabrication; 2018 Jan; 10(2):024101. PubMed ID: 29320372 [TBL] [Abstract][Full Text] [Related]
32. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
33. Sodium Alginate/Gelatine Hydrogels for Direct Bioprinting-The Effect of Composition Selection and Applied Solvents on the Bioink Properties. Bociaga D; Bartniak M; Grabarczyk J; Przybyszewska K Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443354 [TBL] [Abstract][Full Text] [Related]
34. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. Osidak EO; Karalkin PA; Osidak MS; Parfenov VA; Sivogrivov DE; Pereira FDAS; Gryadunova AA; Koudan EV; Khesuani YD; Кasyanov VA; Belousov SI; Krasheninnikov SV; Grigoriev TE; Chvalun SN; Bulanova EA; Mironov VA; Domogatsky SP J Mater Sci Mater Med; 2019 Mar; 30(3):31. PubMed ID: 30830351 [TBL] [Abstract][Full Text] [Related]
35. Biofabrication of valentine-shaped heart with a composite hydrogel and sacrificial material. Zou Q; Grottkau BE; He Z; Shu L; Yang L; Ma M; Ye C Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110205. PubMed ID: 31924015 [TBL] [Abstract][Full Text] [Related]
36. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Zhao Y; Li Y; Mao S; Sun W; Yao R Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399 [TBL] [Abstract][Full Text] [Related]
37. Shape Fidelity Evaluation of Alginate-Based Hydrogels through Extrusion-Based Bioprinting. Temirel M; Dabbagh SR; Tasoglu S J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36412866 [TBL] [Abstract][Full Text] [Related]
38. Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Hazur J; Detsch R; Karakaya E; Kaschta J; Teßmar J; Schneidereit D; Friedrich O; Schubert DW; Boccaccini AR Biofabrication; 2020 Jul; 12(4):045004. PubMed ID: 32485692 [TBL] [Abstract][Full Text] [Related]
39. Development of alginate dialdehyde-gelatin based bioink with methylcellulose for improving printability. Reakasame S; Dranseikiene D; Schrüfer S; Zheng K; Schubert DW; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112336. PubMed ID: 34474887 [TBL] [Abstract][Full Text] [Related]
40. ECM Based Bioink for Tissue Mimetic 3D Bioprinting. Nam SY; Park SH Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]