These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33450930)

  • 1. Heat Transport Control and Thermal Characterization of Low-Dimensional Materials: A Review.
    El Sachat A; Alzina F; Sotomayor Torres CM; Chavez-Angel E
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33450930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient modulation of thermal transport in two-dimensional materials for thermal management in device applications.
    Duan F; Wei D; Chen A; Zheng X; Wang H; Qin G
    Nanoscale; 2023 Jan; 15(4):1459-1483. PubMed ID: 36541854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Transport in 2D Materials.
    Kalantari MH; Zhang X
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.
    Kang JS; Wu H; Hu Y
    Nano Lett; 2017 Dec; 17(12):7507-7514. PubMed ID: 29115845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal-Transport Imaging and Thermal Management of 2D Materials.
    Chen SN; Liu XS; Luo RH; Xu EZ; Tian JG; Liu ZB
    Small Methods; 2021 Dec; 5(12):e2101302. PubMed ID: 34928034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon thermal conduction in novel 2D materials.
    Xu X; Chen J; Li B
    J Phys Condens Matter; 2016 Dec; 28(48):483001. PubMed ID: 27665943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis of thermal boundary conductance of MoS
    Ong ZY; Cai Y; Zhang G; Zhang YW
    Nanotechnology; 2020 Dec; ():. PubMed ID: 33296879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium Phonon Thermal Resistance at MoS
    Zheng W; McClellan CJ; Pop E; Koh YK
    ACS Appl Mater Interfaces; 2022 May; 14(19):22372-22380. PubMed ID: 35506655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational predictions of quantum thermal transport across nanoscale interfaces.
    Zhou H; Ong ZY; Zhang G; Zhang YW
    Nanoscale; 2022 Jul; 14(26):9209-9217. PubMed ID: 35726755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral Heterostructure Formed by Highly Thermally Conductive Fluorinated Graphene for Efficient Device Thermal Management.
    Wang F; Liu Z; Li J; Huang J; Fang L; Wang X; Dai R; Li K; Zhang R; Yang X; Yue Y; Wang Z; Gao Y; Yang K; Zhang L; Xin G
    Adv Sci (Weinh); 2024 Jul; 11(25):e2401586. PubMed ID: 38666496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon and heat transport control using pillar-based phononic crystals.
    Anufriev R; Nomura M
    Sci Technol Adv Mater; 2018; 19(1):863-870. PubMed ID: 30479674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonons and thermal transport in graphene and graphene-based materials.
    Nika DL; Balandin AA
    Rep Prog Phys; 2017 Mar; 80(3):036502. PubMed ID: 28106008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.
    Hoogeboom-Pot KM; Hernandez-Charpak JN; Gu X; Frazer TD; Anderson EH; Chao W; Falcone RW; Yang R; Murnane MM; Kapteyn HC; Nardi D
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4846-51. PubMed ID: 25831491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ballistic phonon transport in holey silicon.
    Lee J; Lim J; Yang P
    Nano Lett; 2015 May; 15(5):3273-9. PubMed ID: 25861026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress in the development of thermal interface materials: a review.
    Zhang Y; Ma J; Wei N; Yang J; Pei QX
    Phys Chem Chem Phys; 2021 Jan; 23(2):753-776. PubMed ID: 33427250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Exciton-Phonon Coupling, High Charge Carrier Mobilities, and Multiexciton Properties in Two-Dimensional Lead, Silver, Cadmium, and Copper Chalcogenide Nanostructures.
    Ding Y; Singh V; Goodman SM; Nagpal P
    J Phys Chem Lett; 2014 Dec; 5(24):4291-7. PubMed ID: 26273976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Conductance of the 2D MoS
    Liu Y; Ong ZY; Wu J; Zhao Y; Watanabe K; Taniguchi T; Chi D; Zhang G; Thong JT; Qiu CW; Hippalgaonkar K
    Sci Rep; 2017 Mar; 7():43886. PubMed ID: 28262778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic Thermal Boundary Resistance across 2D Black Phosphorus: Experiment and Atomistic Modeling of Interfacial Energy Transport.
    Li M; Kang JS; Nguyen HD; Wu H; Aoki T; Hu Y
    Adv Mater; 2019 Aug; 31(33):e1901021. PubMed ID: 31231881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme Thermal Insulation and Tradeoff of Thermal Transport Mechanisms between Graphene and WS
    Zhang R; Gan L; Zhang D; Sun H; Li Y; Ning CZ
    Adv Mater; 2024 May; 36(21):e2313753. PubMed ID: 38403869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.