These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 33450967)
1. Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU. Han Y; Liu C; Yan L; Ren L Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450967 [TBL] [Abstract][Full Text] [Related]
2. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. Young AJ; Simon A; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005 [TBL] [Abstract][Full Text] [Related]
3. A training method for locomotion mode prediction using powered lower limb prostheses. Young AJ; Simon AM; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753 [TBL] [Abstract][Full Text] [Related]
4. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis. Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928 [TBL] [Abstract][Full Text] [Related]
5. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit. Vu HTT; Cao HL; Dong D; Verstraten T; Geeroms J; Vanderborght B Front Neurorobot; 2022; 16():923164. PubMed ID: 36524219 [TBL] [Abstract][Full Text] [Related]
6. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors. Shin D; Lee S; Hwang S Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969 [TBL] [Abstract][Full Text] [Related]
7. IMU-Based Locomotion Mode Identification for Transtibial Prostheses, Orthoses, and Exoskeletons. Gao F; Liu G; Liang F; Liao WH IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1334-1343. PubMed ID: 32286999 [TBL] [Abstract][Full Text] [Related]
8. An Improved Extreme Learning Machine (ELM) Algorithm for Intent Recognition of Transfemoral Amputees With Powered Knee Prosthesis. Zhang Y; Wang X; Xiu H; Chen W; Ma Y; Wei G; Ren L; Ren L IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1757-1766. PubMed ID: 38683719 [TBL] [Abstract][Full Text] [Related]
9. Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables. Sherratt F; Plummer A; Iravani P Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578842 [TBL] [Abstract][Full Text] [Related]
10. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related]
11. Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses. Liu M; Wang D; Helen Huang H IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):434-43. PubMed ID: 25879962 [TBL] [Abstract][Full Text] [Related]
12. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons. Su B; Liu YX; Gutierrez-Farewik EM Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549 [TBL] [Abstract][Full Text] [Related]
13. IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks. Marcos Mazon D; Groefsema M; Schomaker LRB; Carloni R Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433469 [TBL] [Abstract][Full Text] [Related]
14. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks. Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055 [TBL] [Abstract][Full Text] [Related]
15. Real-Time On-Board Recognition of Continuous Locomotion Modes for Amputees With Robotic Transtibial Prostheses. Xu D; Feng Y; Mai J; Wang Q IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2015-2025. PubMed ID: 30334741 [TBL] [Abstract][Full Text] [Related]
16. Unsupervised Sim-to-Real Adaptation for Environmental Recognition in Assistive Walking. Chen C; Zhang K; Leng Y; Chen X; Fu C IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1350-1360. PubMed ID: 35584064 [TBL] [Abstract][Full Text] [Related]
17. Environmental Features Recognition for Lower Limb Prostheses Toward Predictive Walking. Zhang K; Xiong C; Zhang W; Liu H; Lai D; Rong Y; Fu C IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):465-476. PubMed ID: 30703033 [TBL] [Abstract][Full Text] [Related]
18. Real-Time Continuous Locomotion Mode Recognition and Transition Prediction for Human With Lower Limb Exoskeleton. Ma X; Liu Y; Zhang X; Masia L; Song Q IEEE J Biomed Health Inform; 2024 Sep; PP():. PubMed ID: 39288043 [TBL] [Abstract][Full Text] [Related]
19. Wearable Iontronic FMG for Classification of Muscular Locomotion. Zou P; Wang Y; Cai H; Peng T; Pan T; Li R; Fan Y IEEE J Biomed Health Inform; 2022 Jul; 26(7):2854-2863. PubMed ID: 35536817 [TBL] [Abstract][Full Text] [Related]
20. Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses. Zheng E; Wang Q IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):161-170. PubMed ID: 26890910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]