These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 33452022)

  • 1. A CRISPR/Cas9-Mediated, Homology-Independent Tool Developed for Targeted Genome Integration in Yarrowia lipolytica.
    Cui Z; Zheng H; Zhang J; Jiang Z; Zhu Z; Liu X; Qi Q; Hou J
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452022
    [No Abstract]   [Full Text] [Related]  

  • 2. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system.
    Gao S; Tong Y; Wen Z; Zhu L; Ge M; Chen D; Jiang Y; Yang S
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1085-93. PubMed ID: 27349768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.
    Gao D; Smith S; Spagnuolo M; Rodriguez G; Blenner M
    Biotechnol J; 2018 Sep; 13(9):e1700590. PubMed ID: 29809313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica.
    Schwartz CM; Hussain MS; Blenner M; Wheeldon I
    ACS Synth Biol; 2016 Apr; 5(4):356-9. PubMed ID: 26714206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System.
    Bae SJ; Park BG; Kim BG; Hahn JS
    Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.
    Schwartz C; Wheeldon I
    Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.
    Schwartz C; Frogue K; Ramesh A; Misa J; Wheeldon I
    Biotechnol Bioeng; 2017 Dec; 114(12):2896-2906. PubMed ID: 28832943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions.
    Abdel-Mawgoud AM; Stephanopoulos G
    Metab Eng; 2020 Nov; 62():106-115. PubMed ID: 32758536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an efficient CRISPR-iCas9 system in Yarrowia lipolytica for the biosynthesis of carotenoids.
    Chen QH; Qian YD; Niu YJ; Hu CY; Meng YH
    Appl Microbiol Biotechnol; 2023 Oct; 107(20):6299-6313. PubMed ID: 37642716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica.
    Yang Z; Xu P
    Methods Mol Biol; 2021; 2307():111-121. PubMed ID: 33847985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EasyCloneYALI: CRISPR/Cas9-Based Synthetic Toolbox for Engineering of the Yeast Yarrowia lipolytica.
    Holkenbrink C; Dam MI; Kildegaard KR; Beder J; Dahlin J; Doménech Belda D; Borodina I
    Biotechnol J; 2018 Sep; 13(9):e1700543. PubMed ID: 29377615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Editing in Y. lipolytica Using TALENs.
    Rigouin C; Croux C; Dubois G; Daboussi F; Bordes F
    Methods Mol Biol; 2021; 2307():25-39. PubMed ID: 33847980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A set of Yarrowia lipolytica CRISPR/Cas9 vectors for exploiting wild-type strain diversity.
    Larroude M; Trabelsi H; Nicaud JM; Rossignol T
    Biotechnol Lett; 2020 May; 42(5):773-785. PubMed ID: 31974649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of genomic library technology mediated by non-homologous end joining mechanism in Yarrowia lipolytica.
    Bai Q; Cheng S; Zhang J; Li M; Cao Y; Yuan Y
    Sci China Life Sci; 2021 Dec; 64(12):2114-2128. PubMed ID: 33660223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica.
    Cui Z; Jiang X; Zheng H; Qi Q; Hou J
    Biotechnol Bioeng; 2019 Feb; 116(2):354-363. PubMed ID: 30418662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standardized Markerless Gene Integration for Pathway Engineering in Yarrowia lipolytica.
    Schwartz C; Shabbir-Hussain M; Frogue K; Blenner M; Wheeldon I
    ACS Synth Biol; 2017 Mar; 6(3):402-409. PubMed ID: 27989123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion of YALIcloneHR toolkit for Yarrowia lipolytica combined with Golden Gate and CRISPR technology.
    Shen Q; Yan F; Li YW; Wang J; Ji J; Yan WX; He DC; Song P; Shi TQ
    Biotechnol Lett; 2024 Feb; 46(1):37-46. PubMed ID: 38064043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Parameters Drive the Efficiency of CRISPR/Cas9-Induced Gene Modifications in Yarrowia lipolytica.
    Borsenberger V; Onésime D; Lestrade D; Rigouin C; Neuvéglise C; Daboussi F; Bordes F
    J Mol Biol; 2018 Oct; 430(21):4293-4306. PubMed ID: 30227135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica.
    Zhang XK; Wang DN; Chen J; Liu ZJ; Wei LJ; Hua Q
    Biotechnol Lett; 2020 Jun; 42(6):945-956. PubMed ID: 32090297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.