These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 33452223)
21. High frequency burst firing of granule cells ensures transmission at the parallel fiber to purkinje cell synapse at the cost of temporal coding. van Beugen BJ; Gao Z; Boele HJ; Hoebeek F; De Zeeuw CI Front Neural Circuits; 2013; 7():95. PubMed ID: 23734102 [TBL] [Abstract][Full Text] [Related]
22. A hybrid compartmental model for the alligator Purkinje cell. I: Preferred somatopetal conduction of dendritic spikes and soma-axon interaction. Pottala EW; Mortimer JA J Neurosci Res; 1975; 1(3-4):207-25. PubMed ID: 1225987 [TBL] [Abstract][Full Text] [Related]
24. The linear computational algorithm of cerebellar Purkinje cells. Walter JT; Khodakhah K J Neurosci; 2006 Dec; 26(50):12861-72. PubMed ID: 17167077 [TBL] [Abstract][Full Text] [Related]
25. Cerebellar Processing Common to Delay and Trace Eyelid Conditioning. Halverson HE; Khilkevich A; Mauk MD J Neurosci; 2018 Aug; 38(33):7221-7236. PubMed ID: 30012691 [TBL] [Abstract][Full Text] [Related]
26. Direct translation of climbing fiber burst-mediated sensory coding into post-synaptic Purkinje cell dendritic calcium. Roh SE; Kim SH; Ryu C; Kim CE; Kim YG; Worley PF; Kim SK; Kim SJ Elife; 2020 Sep; 9():. PubMed ID: 32985976 [TBL] [Abstract][Full Text] [Related]
27. Synaptic shunting by a baseline of synaptic conductances modulates responses to inhibitory input volleys in cerebellar Purkinje cells. Kreiner L; Jaeger D Cerebellum; 2004; 3(2):112-25. PubMed ID: 15233579 [TBL] [Abstract][Full Text] [Related]
28. Robust transmission of rate coding in the inhibitory Purkinje cell to cerebellar nuclei pathway in awake mice. Abbasi S; Hudson AE; Maran SK; Cao Y; Abbasi A; Heck DH; Jaeger D PLoS Comput Biol; 2017 Jun; 13(6):e1005578. PubMed ID: 28617798 [TBL] [Abstract][Full Text] [Related]
29. Cerebellar LTD and pattern recognition by Purkinje cells. Steuber V; Mittmann W; Hoebeek FE; Silver RA; De Zeeuw CI; Häusser M; De Schutter E Neuron; 2007 Apr; 54(1):121-36. PubMed ID: 17408582 [TBL] [Abstract][Full Text] [Related]
30. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity. Antonietti A; Casellato C; D'Angelo E; Pedrocchi A IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482 [TBL] [Abstract][Full Text] [Related]
31. Using realistic models to study synaptic integration in cerebellar Purkinje cells. De Schutter E Rev Neurosci; 1999; 10(3-4):233-45. PubMed ID: 10526889 [TBL] [Abstract][Full Text] [Related]
32. Iberiotoxin-sensitive large conductance Ca2+ -dependent K+ (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons. Haghdoost-Yazdi H; Janahmadi M; Behzadi G Brain Res; 2008 May; 1212():1-8. PubMed ID: 18439989 [TBL] [Abstract][Full Text] [Related]
33. α2δ-2 Protein Controls Structure and Function at the Cerebellar Climbing Fiber Synapse. Beeson KA; Beeson R; Westbrook GL; Schnell E J Neurosci; 2020 Mar; 40(12):2403-2415. PubMed ID: 32086258 [TBL] [Abstract][Full Text] [Related]
34. Supervised learning with complex spikes and spike-timing-dependent plasticity. Houghton C PLoS One; 2014; 9(6):e99635. PubMed ID: 24945786 [TBL] [Abstract][Full Text] [Related]
35. Dendritic control of spontaneous bursting in cerebellar Purkinje cells. Womack MD; Khodakhah K J Neurosci; 2004 Apr; 24(14):3511-21. PubMed ID: 15071098 [TBL] [Abstract][Full Text] [Related]
37. Calcium dynamics and electrophysiological properties of cerebellar Purkinje cells in SCA1 transgenic mice. Inoue T; Lin X; Kohlmeier KA; Orr HT; Zoghbi HY; Ross WN J Neurophysiol; 2001 Apr; 85(4):1750-60. PubMed ID: 11287496 [TBL] [Abstract][Full Text] [Related]
38. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. Kobayashi Y; Kawano K; Takemura A; Inoue Y; Kitama T; Gomi H; Kawato M J Neurophysiol; 1998 Aug; 80(2):832-48. PubMed ID: 9705472 [TBL] [Abstract][Full Text] [Related]
39. Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. De Schutter E J Neurophysiol; 1998 Aug; 80(2):504-19. PubMed ID: 9705446 [TBL] [Abstract][Full Text] [Related]
40. On the firing rate dependency of the phase response curve of rat Purkinje neurons in vitro. Couto J; Linaro D; De Schutter E; Giugliano M PLoS Comput Biol; 2015 Mar; 11(3):e1004112. PubMed ID: 25775448 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]