These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33452251)

  • 1. Carbon nanotube-reduced graphene oxide fiber with high torsional strength from rheological hierarchy control.
    Eom W; Lee E; Lee SH; Sung TH; Clancy AJ; Lee WJ; Han TH
    Nat Commun; 2021 Jan; 12(1):396. PubMed ID: 33452251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally Responsive Torsional and Tensile Fiber Actuator Based on Graphene Oxide.
    Kim H; Moon JH; Mun TJ; Park TG; Spinks GM; Wallace GG; Kim SJ
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32760-32764. PubMed ID: 30175913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wet-Spun Biofiber for Torsional Artificial Muscles.
    Mirabedini A; Aziz S; Spinks GM; Foroughi J
    Soft Robot; 2017 Dec; 4(4):421-430. PubMed ID: 29251569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube and graphene fiber artificial muscles.
    Foroughi J; Spinks G
    Nanoscale Adv; 2019 Dec; 1(12):4592-4614. PubMed ID: 36133125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance One-Body Electrochemical Torsional Artificial Muscles Built Using Carbon Nanotubes and Ion-Exchange Polymers.
    Hyeon JS; Kim S; Song GH; Moon JH; Park JW; Baughman RH; Kim SJ
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59939-59945. PubMed ID: 38087433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene Interlocking Carbon Nanotubes for High-Strength and High-Conductivity Fibers.
    Li L; Sun T; Lu S; Chen Z; Xu S; Jian M; Zhang J
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5701-5708. PubMed ID: 36661854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Surface Properties of Fiber on Interface Properties of Carbon Fiber/Epoxy Resin and Its Graphene Oxide Modified Hybrid Composites.
    Bai W; Liu W; Li W; Lin Z; Qiu H; Hu X
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoretically Deposited Multiscale Graphene Oxide/Carbon Nanotube Construct Mediated Interfacial Engineering in Carbon Fiber Epoxy Composites.
    Parasuram S; Banerjee P; Raj R; Kumar S; Bose S
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28581-28593. PubMed ID: 37272545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators.
    Cheng H; Huang Y; Shi G; Jiang L; Qu L
    Acc Chem Res; 2017 Jul; 50(7):1663-1671. PubMed ID: 28657710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structurally Stable, High-Strength Graphene Oxide/Carbon Nanotube/Epoxy Resin Aerogels as Three-Dimensional Skeletal Precursors for Wave-Absorbing Materials.
    Zhang L; Song G; Zhao Z; Ma L; Xu H; Wu G; Song Y; Liu Y; Qiu L; Li X
    Gels; 2022 Sep; 8(10):. PubMed ID: 36286119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergy derived by combining graphene and carbon nanotubes as nanofillers in composites.
    Yavari F; Chen L; Zandiatashbar A; Yu Z; Koratkar N
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3165-9. PubMed ID: 22849081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Study of Nanocarbon-Based Flexible Multifunctional Composite Electrodes.
    Cui X; Tian J; Zhang C; Cai R; Ma J; Yang Z; Meng Q
    ACS Omega; 2021 Feb; 6(4):2526-2541. PubMed ID: 33553871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moisture-activated torsional graphene-fiber motor.
    Cheng H; Hu Y; Zhao F; Dong Z; Wang Y; Chen N; Zhang Z; Qu L
    Adv Mater; 2014 May; 26(18):2909-13. PubMed ID: 24449196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide.
    Zhang X; Fan X; Yan C; Li H; Zhu Y; Li X; Yu L
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1543-52. PubMed ID: 22391332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Graphene-Based Natural Fiber Composites.
    Sarker F; Karim N; Afroj S; Koncherry V; Novoselov KS; Potluri P
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34502-34512. PubMed ID: 30222307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers.
    Cong HP; Ren XC; Wang P; Yu SH
    Sci Rep; 2012; 2():613. PubMed ID: 22937222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Performance of Graphene in Heat Dissipation when Combined with an Orientated Magnetic Carbon Fiber Skeleton under Low-Temperature Thermal Annealing.
    Li J; Lei R; Lai J; Chen X; Li Y
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30909369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.
    Lin X; Liu P; Wei Y; Li Q; Wang J; Wu Y; Feng C; Zhang L; Fan S; Jiang K
    Nat Commun; 2013; 4():2920. PubMed ID: 24356342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.
    Sun G; Zhang X; Lin R; Yang J; Zhang H; Chen P
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4651-6. PubMed ID: 25694387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes.
    Gong S; Cui W; Zhang Q; Cao A; Jiang L; Cheng Q
    ACS Nano; 2015 Dec; 9(12):11568-73. PubMed ID: 26469807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.