These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33452337)

  • 1. Evidence for a spin acoustic surface plasmon from inelastic atom scattering.
    Benedek G; Bernasconi M; Campi D; Silkin IV; Chernov IP; Silkin VM; Chulkov EV; Echenique PM; Toennies JP; Anemone G; Al Taleb A; Miranda R; Farías D
    Sci Rep; 2021 Jan; 11(1):1506. PubMed ID: 33452337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutual spin-phonon driving effects and phonon eigenvector renormalization in nickel (II) oxide.
    Sun Q; Wei B; Su Y; Smith H; Lin JYY; Abernathy DL; Li C
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2120553119. PubMed ID: 35858352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in ultrahigh-energy resolution EELS: phonons, infrared plasmons and strongly coupled modes.
    Lagos MJ; Bicket IC; Mousavi M SS; Botton GA
    Microscopy (Oxf); 2022 Feb; 71(Supplement_1):i174-i199. PubMed ID: 35275180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon dynamics of graphene on metals.
    Al Taleb A; Farías D
    J Phys Condens Matter; 2016 Mar; 28(10):103005. PubMed ID: 26886508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced creation of dispersive monolayer phonons in XePt(111) by inelastic helium atom scattering at low energies.
    Hansen FY; Bruch LW
    J Chem Phys; 2007 Nov; 127(20):204708. PubMed ID: 18052447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron-Phonon Coupling Strength at Metal Surfaces Directly Determined from the Helium Atom Scattering Debye-Waller Factor.
    Manson JR; Benedek G; Miret-Artés S
    J Phys Chem Lett; 2016 Mar; 7(6):1016-21. PubMed ID: 26927966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode-selected electron-phonon coupling in superconducting Pb nanofilms determined from He atom scattering.
    Sklyadneva IY; Benedek G; Chulkov EV; Echenique PM; Heid R; Bohnen KP; Toennies JP
    Phys Rev Lett; 2011 Aug; 107(9):095502. PubMed ID: 21929252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron-phonon coupling on the surface of the topological insulator Bi2Se3 determined from surface-phonon dispersion measurements.
    Zhu X; Santos L; Howard C; Sankar R; Chou FC; Chamon C; El-Batanouny M
    Phys Rev Lett; 2012 May; 108(18):185501. PubMed ID: 22681089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A "Phase Scrambling" Algorithm for Parallel Multislice Simulation of Multiple Phonon and Plasmon Scattering Configurations.
    Mendis BG
    Microsc Microanal; 2023 Jun; 29(3):1111-1123. PubMed ID: 37749702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling phonons in a molecular qubit with four-dimensional inelastic neutron scattering and density functional theory.
    Garlatti E; Tesi L; Lunghi A; Atzori M; Voneshen DJ; Santini P; Sanvito S; Guidi T; Sessoli R; Carretta S
    Nat Commun; 2020 Apr; 11(1):1751. PubMed ID: 32273510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering.
    Mendis B
    Acta Crystallogr A Found Adv; 2024 Mar; 80(Pt 2):178-188. PubMed ID: 38270201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-phonon coupling in a double-stranded model of DNA.
    Peralta M; Feijoo S; Varela S; Gutierrez R; Cuniberti G; Mujica V; Medina E
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37449581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Phonon Damping Behavior in Quantum Dots Capped with Organic and Inorganic Ligands.
    Schnitzenbaumer KJ; Dukovic G
    Nano Lett; 2018 Jun; 18(6):3667-3674. PubMed ID: 29781281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic dielectric function and phonon self-energy from electrons strongly correlated with acoustic phonons in 2D Dirac crystals.
    Kazemian S; Fanchini G
    J Phys Condens Matter; 2023 May; 35(32):. PubMed ID: 37080212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling mode-selected electron-phonon interactions in metal films by helium atom scattering.
    Benedek G; Bernasconi M; Bohnen KP; Campi D; Chulkov EV; Echenique PM; Heid R; Sklyadneva IY; Toennies JP
    Phys Chem Chem Phys; 2014 Apr; 16(16):7159-72. PubMed ID: 24473191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous Acoustic Plasmon Mode from Topologically Protected States.
    Jia X; Zhang S; Sankar R; Chou FC; Wang W; Kempa K; Plummer EW; Zhang J; Zhu X; Guo J
    Phys Rev Lett; 2017 Sep; 119(13):136805. PubMed ID: 29341707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of virtual photon and phonon pairs from qubit-plasmon-phonon ultrastrong coupling system.
    Ma TT; Liu YQ; Yu CS
    Opt Express; 2023 Sep; 31(19):30832-30846. PubMed ID: 37710617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron Scattering via Interface Optical Phonons with High Group Velocity in Wurtzite GaN-based Quantum Well Heterostructure.
    Park K; Mohamed A; Dutta M; Stroscio MA; Bayram C
    Sci Rep; 2018 Oct; 8(1):15947. PubMed ID: 30374108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Dynamics of EuO: Evidence for Giant Spin-Phonon Coupling.
    Pradip R; Piekarz P; Bosak A; Merkel DG; Waller O; Seiler A; Chumakov AI; Rüffer R; Oleś AM; Parlinski K; Krisch M; Baumbach T; Stankov S
    Phys Rev Lett; 2016 May; 116(18):185501. PubMed ID: 27203332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.