These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33452417)

  • 1. Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying.
    Wang T; Shukla S; Gwalani B; Sinha S; Thapliyal S; Frank M; Mishra RS
    Sci Rep; 2021 Jan; 11(1):1579. PubMed ID: 33452417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction.
    Frank M; Nene SS; Chen Y; Gwalani B; Kautz EJ; Devaraj A; An K; Mishra RS
    Sci Rep; 2020 Dec; 10(1):22263. PubMed ID: 33335268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design metastability in high-entropy alloys by tailoring unstable fault energies.
    Wang X; De Vecchis RR; Li C; Zhang H; Hu X; Sridar S; Wang Y; Chen W; Xiong W
    Sci Adv; 2022 Sep; 8(36):eabo7333. PubMed ID: 36083911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the Stacking Fault-Driven Phase Transition Delaying Cryogenic Fracture in Fe-Co-Cr-Ni-Mo-C-Based Medium-Entropy Alloy.
    Ding H; Du Z; Zhang H; Liu Y; Zhao S; Yang Y; Wang C; Lei S; Geng R; Wang C
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites.
    Fan J; Qiao JW; Wang ZH; Rao W; Kang GZ
    Sci Rep; 2017 May; 7(1):1877. PubMed ID: 28500321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity Improvement in a Co-Rich Co
    Li Y; Chen Y; Nutor RK; Wang N; Cao Q; Wang X; Zhang D; Jiang JZ
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy.
    Yang Y; Chen T; Tan L; Poplawsky JD; An K; Wang Y; Samolyuk GD; Littrell K; Lupini AR; Borisevich A; George EP
    Nature; 2021 Jul; 595(7866):245-249. PubMed ID: 34234333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The {332}<113> Twinning Behavior of a Ti-15Mo Medical Alloy during Cyclic Deformation and Its Effect on Microstructure and Performance.
    Xu T; Sun B; Zhang S; Liu Y; Sun W; Cui N; Lv B
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38611977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
    Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC
    Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys.
    Kim JT; Hong SH; Park HJ; Kim YS; Suh JY; Lee JK; Park JM; Maity T; Eckert J; Kim KB
    Sci Rep; 2017 Jan; 7():39959. PubMed ID: 28067248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys.
    Li Z; Tasan CC; Springer H; Gault B; Raabe D
    Sci Rep; 2017 Jan; 7():40704. PubMed ID: 28079175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy.
    Nene SS; Liu K; Frank M; Mishra RS; Brennan RE; Cho KC; Li Z; Raabe D
    Sci Rep; 2017 Nov; 7(1):16167. PubMed ID: 29170444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy.
    Song H; Kim DG; Kim DW; Jo MC; Jo YH; Kim W; Kim HS; Lee BJ; Lee S
    Sci Rep; 2019 Apr; 9(1):6163. PubMed ID: 30992512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling.
    Klimova M; Stepanov N; Shaysultanov D; Chernichenko R; Yurchenko N; Sanin V; Zherebtsov S
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29286328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous enhancement of strength and ductility
    Yang L; Liang D; Cheng Z; Duan R; Zhong C; Luan J; Jiao Z; Ren F
    Fundam Res; 2024 Jan; 4(1):147-157. PubMed ID: 38933833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outstanding Tensile Properties and Their Origins in Twinning-Induced Plasticity (TWIP) Steels with Gradient Substructures.
    Zhi H; Zhang C; Guo Z; Antonov S; Su Y
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32155858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-Dependent Superplasticity and Strengthening in CoNiCrFeMn High Entropy Alloy Nanowires Using Atomistic Simulations.
    Tripathi PK; Chiu YC; Bhowmick S; Lo YC
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of V Addition on the Deformation Mechanism and Mechanical Properties of Non-Equiatomic CoCrNi Medium-Entropy Alloys.
    Shen R; Ni Z; Peng S; Yan H; Tian Y
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Annealing Temperature on the Microstructure and Mechanical Properties of CoCrFeNiNb
    Fan R; Zhao S; Wang L; Wang L; Guo E
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.
    Tian YZ; Zhao LJ; Chen S; Shibata A; Zhang ZF; Tsuji N
    Sci Rep; 2015 Nov; 5():16707. PubMed ID: 26582568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.