These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33452940)

  • 21. Regulation of sterol metabolism in Candida albicans by the UPC2 gene.
    White TC; Silver PM
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1215-8. PubMed ID: 16246084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of Haploid Model of
    Truong T; Suriyanarayanan T; Zeng G; Le TD; Liu L; Li J; Tong C; Wang Y; Seneviratne CJ
    Front Cell Infect Microbiol; 2018; 8():164. PubMed ID: 29938200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antifungal Activity of Mammalian Serum Amyloid A1 against
    Gong J; Wu J; Ikeh M; Tao L; Zhang Y; Bing J; Nobile CJ; Huang G
    Antimicrob Agents Chemother; 2019 Dec; 64(1):. PubMed ID: 31685470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest.
    Li L; Sun J; Xia S; Tian X; Cheserek MJ; Le G
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3245-53. PubMed ID: 26743655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fungicidal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Candida albicans.
    Lee DG; Kim DH; Park Y; Kim HK; Kim HN; Shin YK; Choi CH; Hahm KS
    Biochem Biophys Res Commun; 2001 Mar; 282(2):570-4. PubMed ID: 11401498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans.
    Dhamgaye S; Devaux F; Vandeputte P; Khandelwal NK; Sanglard D; Mukhopadhyay G; Prasad R
    PLoS One; 2014; 9(8):e104554. PubMed ID: 25105295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of
    Romo JA; Pierce CG; Chaturvedi AK; Lazzell AL; McHardy SF; Saville SP; Lopez-Ribot JL
    mBio; 2017 Dec; 8(6):. PubMed ID: 29208749
    [No Abstract]   [Full Text] [Related]  

  • 28. Molecular Elucidation of Riboflavin Production and Regulation in Candida albicans, toward a Novel Antifungal Drug Target.
    Demuyser L; Palmans I; Vandecruys P; Van Dijck P
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32759338
    [No Abstract]   [Full Text] [Related]  

  • 29. Genomic identification of potential targets unique to Candida albicans for the discovery of antifungal agents.
    Tripathi H; Luqman S; Meena A; Khan F
    Curr Drug Targets; 2014 Jan; 15(1):136-49. PubMed ID: 24102473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rep1p negatively regulating MDR1 efflux pump involved in drug resistance in Candida albicans.
    Chen CG; Yang YL; Tseng KY; Shih HI; Liou CH; Lin CC; Lo HJ
    Fungal Genet Biol; 2009 Sep; 46(9):714-20. PubMed ID: 19527793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vanillin confers antifungal drug synergism in Candida albicans by impeding CaCdr2p driven efflux.
    Saibabu V; Fatima Z; Singh S; Khan LA; Hameed S
    J Mycol Med; 2020 Apr; 30(1):100921. PubMed ID: 31937429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of the
    Ajdidi A; Sheehan G; Abu Elteen K; Kavanagh K
    J Med Microbiol; 2019 Oct; 68(10):1497-1506. PubMed ID: 31460860
    [No Abstract]   [Full Text] [Related]  

  • 33. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance.
    Chandra J; Kuhn DM; Mukherjee PK; Hoyer LL; McCormick T; Ghannoum MA
    J Bacteriol; 2001 Sep; 183(18):5385-94. PubMed ID: 11514524
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Gong Y; Li T; Yu C; Sun S
    Front Cell Infect Microbiol; 2017; 7():520. PubMed ID: 29312897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human fungal pathogen Candida albicans in the postgenomic era: an overview.
    Kabir MA; Hussain MA
    Expert Rev Anti Infect Ther; 2009 Feb; 7(1):121-34. PubMed ID: 19622061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of Candida albicans growth by brominated furanones.
    Duo M; Zhang M; Luk YY; Ren D
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1551-63. PubMed ID: 19756586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Candida Efflux ATPases and Antiporters in Clinical Drug Resistance.
    Prasad R; Rawal MK; Shah AH
    Adv Exp Med Biol; 2016; 892():351-376. PubMed ID: 26721282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensitivity of White and Opaque Candida albicans Cells to Antifungal Drugs.
    Craik VB; Johnson AD; Lohse MB
    Antimicrob Agents Chemother; 2017 Aug; 61(8):. PubMed ID: 28507115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells.
    do Nascimento Dias J; de Souza Silva C; de Araújo AR; Souza JMT; de Holanda Veloso Júnior PH; Cabral WF; da Glória da Silva M; Eaton P; de Souza de Almeida Leite JR; Nicola AM; Albuquerque P; Silva-Pereira I
    Sci Rep; 2020 Jun; 10(1):10327. PubMed ID: 32587287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans.
    Hwang JH; Jin Q; Woo ER; Lee DG
    Biochimie; 2013 Oct; 95(10):1917-22. PubMed ID: 23816874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.