BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33453165)

  • 1. Computationally reconstructing cotranscriptional RNA folding from experimental data reveals rearrangement of non-native folding intermediates.
    Yu AM; Gasper PM; Cheng L; Lai LB; Kaur S; Gopalan V; Chen AA; Lucks JB
    Mol Cell; 2021 Feb; 81(4):870-883.e10. PubMed ID: 33453165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Guide to Computational Cotranscriptional Folding Featuring the SRP RNA.
    Badelt S; Lorenz R
    Methods Mol Biol; 2024; 2726():315-346. PubMed ID: 38780737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cotranscriptional folding of a riboswitch at nucleotide resolution.
    Watters KE; Strobel EJ; Yu AM; Lis JT; Lucks JB
    Nat Struct Mol Biol; 2016 Dec; 23(12):1124-1131. PubMed ID: 27798597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding.
    Incarnato D; Morandi E; Anselmi F; Simon LM; Basile G; Oliviero S
    Nucleic Acids Res; 2017 Sep; 45(16):9716-9725. PubMed ID: 28934475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct visualization reveals dynamics of a transient intermediate during protein assembly.
    Zhang X; Lam VQ; Mou Y; Kimura T; Chung J; Chandrasekar S; Winkler JR; Mayo SL; Shan SO
    Proc Natl Acad Sci U S A; 2011 Apr; 108(16):6450-5. PubMed ID: 21464281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of the signal recognition particle in complex with its receptor.
    Ataide SF; Schmitz N; Shen K; Ke A; Shan SO; Doudna JA; Ban N
    Science; 2011 Feb; 331(6019):881-6. PubMed ID: 21330537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of 4.5S RNA in the signal recognition particle of Escherichia coli as studied by enzymatic and chemical probing.
    Lentzen G; Moine H; Ehresmann C; Ehresmann B; Wintermeyer W
    RNA; 1996 Mar; 2(3):244-53. PubMed ID: 8608448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. M1 RNA is important for the in-cell solubility of its cognate C5 protein: Implications for RNA-mediated protein folding.
    Son A; Choi SI; Han G; Seong BL
    RNA Biol; 2015; 12(11):1198-208. PubMed ID: 26517763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Biogenesis of SRP RNA Is Modulated by an RNA Folding Intermediate Attained during Transcription.
    Fukuda S; Yan S; Komi Y; Sun M; Gabizon R; Bustamante C
    Mol Cell; 2020 Jan; 77(2):241-250.e8. PubMed ID: 31706702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction.
    Neher SB; Bradshaw N; Floor SN; Gross JD; Walter P
    Nat Struct Mol Biol; 2008 Sep; 15(9):916-23. PubMed ID: 19172744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting.
    Bradshaw N; Walter P
    Mol Biol Cell; 2007 Jul; 18(7):2728-34. PubMed ID: 17507650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotranscriptional Kinetic Folding of RNA Secondary Structures Including Pseudoknots.
    Thanh VH; Korpela D; Orponen P
    J Comput Biol; 2021 Sep; 28(9):892-908. PubMed ID: 33902324
    [No Abstract]   [Full Text] [Related]  

  • 13. Lon Protease Removes Excess Signal Recognition Particle Protein in Escherichia coli.
    Sauerbrei B; Arends J; Schünemann D; Narberhaus F
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32366590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing.
    Kang JY; Mishanina TV; Bellecourt MJ; Mooney RA; Darst SA; Landick R
    Mol Cell; 2018 Mar; 69(5):802-815.e5. PubMed ID: 29499135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pausing on the cotranscriptional folding kinetics of RNAs.
    Wang K; He Y; Shen Y; Wang Y; Xu X; Song X; Sun T
    Int J Biol Macromol; 2022 Nov; 221():1345-1355. PubMed ID: 36115451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of GTPase activation at the signal recognition particle (SRP) RNA distal end.
    Shen K; Wang Y; Hwang Fu YH; Zhang Q; Feigon J; Shan SO
    J Biol Chem; 2013 Dec; 288(51):36385-97. PubMed ID: 24151069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the RNA Binding Specificity Landscape of C5 Protein Reveals Structure and Sequence Preferences that Direct RNase P Specificity.
    Lin HC; Zhao J; Niland CN; Tran B; Jankowsky E; Harris ME
    Cell Chem Biol; 2016 Oct; 23(10):1271-1281. PubMed ID: 27693057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Cotranscriptional Folding Kinetics For Riboswitch.
    Sun TT; Zhao C; Chen SJ
    J Phys Chem B; 2018 Aug; 122(30):7484-7496. PubMed ID: 29985608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of external molecular factors on adaptation of bacterial RNase P ribozymes to thermophilic conditions.
    Rahman MS; Matsumura S; Ikawa Y
    Biochem Biophys Res Commun; 2020 Mar; 523(2):342-347. PubMed ID: 31866011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of C5 protein to P RNA enhances the rate constant for catalysis for P RNA processing of pre-tRNAs lacking a consensus (+ 1)/C(+ 72) pair.
    Sun L; Campbell FE; Yandek LE; Harris ME
    J Mol Biol; 2010 Feb; 395(5):1019-37. PubMed ID: 19917291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.