BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 33453169)

  • 1. RADX controls RAD51 filament dynamics to regulate replication fork stability.
    Adolph MB; Mohamed TM; Balakrishnan S; Xue C; Morati F; Modesti M; Greene EC; Chazin WJ; Cortez D
    Mol Cell; 2021 Mar; 81(5):1074-1083.e5. PubMed ID: 33453169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RADX Modulates RAD51 Activity to Control Replication Fork Protection.
    Bhat KP; Krishnamoorthy A; Dungrawala H; Garcin EB; Modesti M; Cortez D
    Cell Rep; 2018 Jul; 24(3):538-545. PubMed ID: 30021152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RADX prevents genome instability by confining replication fork reversal to stalled forks.
    Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D
    Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligomerization of DNA replication regulatory protein RADX is essential to maintain replication fork stability.
    Mohamed T; Adolph MB; Cortez D
    J Biol Chem; 2022 Mar; 298(3):101672. PubMed ID: 35120927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RADX Promotes Genome Stability and Modulates Chemosensitivity by Regulating RAD51 at Replication Forks.
    Dungrawala H; Bhat KP; Le Meur R; Chazin WJ; Ding X; Sharan SK; Wessel SR; Sathe AA; Zhao R; Cortez D
    Mol Cell; 2017 Aug; 67(3):374-386.e5. PubMed ID: 28735897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of RADX and mechanism for regulation of RAD51 nucleofilaments.
    Balakrishnan S; Adolph M; Tsai MS; Akizuki T; Gallagher K; Cortez D; Chazin WJ
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2316491121. PubMed ID: 38466836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-dependent Base Editing Screens Identify Separation of Function Mutants of RADX with Altered RAD51 Regulatory Activity.
    Adolph MB; Garje AS; Balakrishnan S; Morati F; Modesti M; Chazin WJ; Cortez D
    J Mol Biol; 2023 Oct; 435(19):168236. PubMed ID: 37572935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RADX condenses single-stranded DNA to antagonize RAD51 loading.
    Zhang H; Schaub JM; Finkelstein IJ
    Nucleic Acids Res; 2020 Aug; 48(14):7834-7843. PubMed ID: 32621611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments.
    Kolinjivadi AM; Sannino V; De Antoni A; Zadorozhny K; Kilkenny M; Técher H; Baldi G; Shen R; Ciccia A; Pellegrini L; Krejci L; Costanzo V
    Mol Cell; 2017 Sep; 67(5):867-881.e7. PubMed ID: 28757209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-dependent nucleosome unwrapping catalyzed by human RAD51.
    North JA; Amunugama R; Klajner M; Bruns AN; Poirier MG; Fishel R
    Nucleic Acids Res; 2013 Aug; 41(15):7302-12. PubMed ID: 23757189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BRCA2 regulates DMC1-mediated recombination through the BRC repeats.
    Martinez JS; von Nicolai C; Kim T; Ehlén Å; Mazin AV; Kowalczykowski SC; Carreira A
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3515-20. PubMed ID: 26976601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of RADX and mechanism for regulation of RAD51 nucleofilaments.
    Balakrishnan S; Adolph M; Tsai MS; Gallagher K; Cortez D; Chazin WJ
    bioRxiv; 2023 Sep; ():. PubMed ID: 37786681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RADX interacts with single-stranded DNA to promote replication fork stability.
    Schubert L; Ho T; Hoffmann S; Haahr P; Guérillon C; Mailand N
    EMBO Rep; 2017 Nov; 18(11):1991-2003. PubMed ID: 29021206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p53 suppresses BRCA2-stimulated ATPase and strand exchange functions of human RAD51.
    Verma S; Rao BJ
    J Biochem; 2013 Sep; 154(3):237-48. PubMed ID: 23678008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-stranded DNA binding function of RAD51 in DNA protection and its regulation by BRCA2.
    Halder S; Sanchez A; Ranjha L; Reginato G; Ceppi I; Acharya A; Anand R; Cejka P
    Mol Cell; 2022 Oct; 82(19):3553-3565.e5. PubMed ID: 36070766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of direct and diffusion-assisted RAD51 nucleation by full-length human BRCA2 protein.
    Belan O; Greenhough L; Kuhlen L; Anand R; Kaczmarczyk A; Gruszka DT; Yardimci H; Zhang X; Rueda DS; West SC; Boulton SJ
    Mol Cell; 2023 Aug; 83(16):2925-2940.e8. PubMed ID: 37499663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Rad51 paralog complex Rad55-Rad57 acts as a molecular chaperone during homologous recombination.
    Roy U; Kwon Y; Marie L; Symington L; Sung P; Lisby M; Greene EC
    Mol Cell; 2021 Mar; 81(5):1043-1057.e8. PubMed ID: 33421364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replication Fork Reversal: Players and Guardians.
    Quinet A; Lemaçon D; Vindigni A
    Mol Cell; 2017 Dec; 68(5):830-833. PubMed ID: 29220651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.