These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33453177)

  • 1. Administration of a CXC Chemokine Receptor 2 (CXCR2) Antagonist, SCH527123, Together with Oseltamivir Suppresses NETosis and Protects Mice from Lethal Influenza and Piglets from Swine-Influenza Infection.
    Ashar HK; Pulavendran S; Rudd JM; Maram P; Achanta M; Chow VTK; Malayer JR; Snider TA; Teluguakula N
    Am J Pathol; 2021 Apr; 191(4):669-685. PubMed ID: 33453177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist.
    Gonsiorek W; Fan X; Hesk D; Fossetta J; Qiu H; Jakway J; Billah M; Dwyer M; Chao J; Deno G; Taveras A; Lundell DJ; Hipkin RW
    J Pharmacol Exp Ther; 2007 Aug; 322(2):477-85. PubMed ID: 17496166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel, orally active CXCR1/2 receptor antagonist, Sch527123, inhibits neutrophil recruitment, mucus production, and goblet cell hyperplasia in animal models of pulmonary inflammation.
    Chapman RW; Minnicozzi M; Celly CS; Phillips JE; Kung TT; Hipkin RW; Fan X; Rindgen D; Deno G; Bond R; Gonsiorek W; Billah MM; Fine JS; Hey JA
    J Pharmacol Exp Ther; 2007 Aug; 322(2):486-93. PubMed ID: 17496165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination Therapy Targeting Platelet Activation and Virus Replication Protects Mice against Lethal Influenza Pneumonia.
    Pulavendran S; Rudd JM; Maram P; Thomas PG; Akhilesh R; Malayer JR; Chow VTK; Teluguakula N
    Am J Respir Cell Mol Biol; 2019 Dec; 61(6):689-701. PubMed ID: 31070937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined anti CXC receptors 1 and 2 therapy is a promising anti-inflammatory treatment for respiratory diseases by reducing neutrophil migration and activation.
    Planagumà A; Domènech T; Pont M; Calama E; García-González V; López R; Aulí M; López M; Fonquerna S; Ramos I; de Alba J; Nueda A; Prats N; Segarra V; Miralpeix M; Lehner MD
    Pulm Pharmacol Ther; 2015 Oct; 34():37-45. PubMed ID: 26271598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophil chemotaxis caused by chronic obstructive pulmonary disease alveolar macrophages: the role of CXCL8 and the receptors CXCR1/CXCR2.
    Kaur M; Singh D
    J Pharmacol Exp Ther; 2013 Oct; 347(1):173-80. PubMed ID: 23912333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects.
    Holz O; Khalilieh S; Ludwig-Sengpiel A; Watz H; Stryszak P; Soni P; Tsai M; Sadeh J; Magnussen H
    Eur Respir J; 2010 Mar; 35(3):564-70. PubMed ID: 19643947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Astilbin inhibited neutrophil extracellular traps in gouty arthritis through suppression of purinergic P2Y6 receptor.
    Li C; Huang Y; Wu C; Qiu Y; Zhang L; Xu J; Zheng J; Zhang X; Li F; Xia D
    Phytomedicine; 2024 Jul; 130():155754. PubMed ID: 38820662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Chemokine Receptor CXCR2 Supports Nociceptive Sensitization after Traumatic Brain Injury.
    Liang DY; Shi X; Liu P; Sun Y; Sahbaie P; Li WW; Yeomans DC; Clark JD
    Mol Pain; 2017; 13():1744806917730212. PubMed ID: 28845733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial.
    Nair P; Gaga M; Zervas E; Alagha K; Hargreave FE; O'Byrne PM; Stryszak P; Gann L; Sadeh J; Chanez P;
    Clin Exp Allergy; 2012 Jul; 42(7):1097-103. PubMed ID: 22702508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis.
    Martinod K; Witsch T; Farley K; Gallant M; Remold-O'Donnell E; Wagner DD
    J Thromb Haemost; 2016 Mar; 14(3):551-8. PubMed ID: 26712312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of 2-hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5- methylfuran-2-yl)propyl]amino]-3,4-dioxocyclobut-1-enylamino}benzamide (SCH 527123): a potent, orally bioavailable CXCR2/CXCR1 receptor antagonist.
    Dwyer MP; Yu Y; Chao J; Aki C; Chao J; Biju P; Girijavallabhan V; Rindgen D; Bond R; Mayer-Ezel R; Jakway J; Hipkin RW; Fossetta J; Gonsiorek W; Bian H; Fan X; Terminelli C; Fine J; Lundell D; Merritt JR; Rokosz LL; Kaiser B; Li G; Wang W; Stauffer T; Ozgur L; Baldwin J; Taveras AG
    J Med Chem; 2006 Dec; 49(26):7603-6. PubMed ID: 17181143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LPS challenge in healthy subjects: an investigation of neutrophil chemotaxis mechanisms involving CXCR1 and CXCR2.
    Aul R; Patel S; Summerhill S; Kilty I; Plumb J; Singh D
    Int Immunopharmacol; 2012 Jul; 13(3):225-31. PubMed ID: 22561413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of a CXCR1/CXCR2 antagonist on neutrophil migration in mild atopic asthmatic subjects.
    Todd CM; Salter BM; Murphy DM; Watson RM; Howie KJ; Milot J; Sadeh J; Boulet LP; O'Byrne PM; Gauvreau GM
    Pulm Pharmacol Ther; 2016 Dec; 41():34-39. PubMed ID: 27640067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical role of IL-1 receptor-associated kinase-M in regulating chemokine-dependent deleterious inflammation in murine influenza pneumonia.
    Seki M; Kohno S; Newstead MW; Zeng X; Bhan U; Lukacs NW; Kunkel SL; Standiford TJ
    J Immunol; 2010 Feb; 184(3):1410-8. PubMed ID: 20042589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of CXCR2 Inhibition on Behavioral Outcomes and Pathology in Rat Model of Neuromyelitis Optica.
    Jones MV; Levy M
    J Immunol Res; 2018; 2018():9034695. PubMed ID: 30648122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutrophils Induce a Novel Chemokine Receptors Repertoire During Influenza Pneumonia.
    Rudd JM; Pulavendran S; Ashar HK; Ritchey JW; Snider TA; Malayer JR; Marie M; Chow VTK; Narasaraju T
    Front Cell Infect Microbiol; 2019; 9():108. PubMed ID: 31041196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma.
    Uddin M; Watz H; Malmgren A; Pedersen F
    Front Immunol; 2019; 10():47. PubMed ID: 30804927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation.
    Marcos V; Zhou Z; Yildirim AO; Bohla A; Hector A; Vitkov L; Wiedenbauer EM; Krautgartner WD; Stoiber W; Belohradsky BH; Rieber N; Kormann M; Koller B; Roscher A; Roos D; Griese M; Eickelberg O; Döring G; Mall MA; Hartl D
    Nat Med; 2010 Sep; 16(9):1018-23. PubMed ID: 20818377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipase D2 drives mortality in sepsis by inhibiting neutrophil extracellular trap formation and down-regulating CXCR2.
    Lee SK; Kim SD; Kook M; Lee HY; Ghim J; Choi Y; Zabel BA; Ryu SH; Bae YS
    J Exp Med; 2015 Aug; 212(9):1381-90. PubMed ID: 26282875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.