These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 33453216)
1. Functional role of carbon dioxide on intermittent hypoxia induced respiratory response following mid-cervical contusion in the rat. Lin MT; Vinit S; Lee KZ Exp Neurol; 2021 May; 339():113610. PubMed ID: 33453216 [TBL] [Abstract][Full Text] [Related]
2. 5-HT7 Receptor Inhibition Transiently Improves Respiratory Function Following Daily Acute Intermittent Hypercapnic-Hypoxia in Rats With Chronic Midcervical Spinal Cord Contusion. Wu MJ; Vinit S; Chen CL; Lee KZ Neurorehabil Neural Repair; 2020 Apr; 34(4):333-343. PubMed ID: 32102596 [No Abstract] [Full Text] [Related]
3. Modulation of Serotonin and Adenosine 2A Receptors on Intermittent Hypoxia-Induced Respiratory Recovery following Mid-Cervical Contusion in the Rat. Wen MH; Wu MJ; Vinit S; Lee KZ J Neurotrauma; 2019 Nov; 36(21):2991-3004. PubMed ID: 31099299 [TBL] [Abstract][Full Text] [Related]
4. Mild Acute Intermittent Hypoxia Improves Respiratory Function in Unanesthetized Rats With Midcervical Contusion. Lee KZ; Chiang SC; Li YJ Neurorehabil Neural Repair; 2017 Apr; 31(4):364-375. PubMed ID: 28332435 [TBL] [Abstract][Full Text] [Related]
5. Peripheral chemoreflex contribution to ventilatory long-term facilitation induced by acute intermittent hypercapnic hypoxia in males and females. Vermeulen TD; Benbaruj J; Brown CV; Shafer BM; Floras JS; Foster GE J Physiol; 2020 Oct; 598(20):4713-4730. PubMed ID: 32744340 [TBL] [Abstract][Full Text] [Related]
6. Acute intermittent hypercapnic-hypoxia elicits central neural respiratory motor plasticity in humans. Welch JF; Nair J; Argento PJ; Mitchell GS; Fox EJ J Physiol; 2022 May; 600(10):2515-2533. PubMed ID: 35348218 [TBL] [Abstract][Full Text] [Related]
7. Intermittent hypercapnic hypoxia during sleep does not induce ventilatory long-term facilitation in healthy males. Deacon NL; McEvoy RD; Stadler DL; Catcheside PG J Appl Physiol (1985); 2017 Sep; 123(3):534-543. PubMed ID: 28620058 [TBL] [Abstract][Full Text] [Related]
9. Impact of cervical spinal cord contusion on the breathing pattern across the sleep-wake cycle in the rat. Lee KZ J Appl Physiol (1985); 2019 Jan; 126(1):111-123. PubMed ID: 30496708 [TBL] [Abstract][Full Text] [Related]
10. The Impact of Cervical Spinal Cord Contusion on the Laryngeal Resistance in the Rat. Lee KZ; Xu KJ J Neurotrauma; 2019 Feb; 36(3):448-459. PubMed ID: 29943656 [TBL] [Abstract][Full Text] [Related]
11. Diaphragm and Intercostal Muscle Activity after Mid-Cervical Spinal Cord Contusion in the Rat. Wen MH; Lee KZ J Neurotrauma; 2018 Feb; 35(3):533-547. PubMed ID: 28844175 [TBL] [Abstract][Full Text] [Related]
12. Long-term facilitation of ventilation in humans with chronic spinal cord injury. Tester NJ; Fuller DD; Fromm JS; Spiess MR; Behrman AL; Mateika JH Am J Respir Crit Care Med; 2014 Jan; 189(1):57-65. PubMed ID: 24224903 [TBL] [Abstract][Full Text] [Related]
13. Impact of cervical spinal cord injury on the relationship between the metabolism and ventilation in rats. Chiu TT; Lee KZ J Appl Physiol (1985); 2021 Dec; 131(6):1799-1814. PubMed ID: 34647826 [TBL] [Abstract][Full Text] [Related]