BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 3345334)

  • 1. Analysis of the factors that influence the C=N stretching frequency of polyene Schiff bases. Implications for bacteriorhodopsin and rhodopsin.
    Gilson HS; Honig BH; Croteau A; Zarrilli G; Nakanishi K
    Biophys J; 1988 Feb; 53(2):261-9. PubMed ID: 3345334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.
    Deng H; Huang L; Callender R; Ebrey T
    Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the retinal chromophore in sensory rhodopsin I from resonance Raman spectroscopy.
    Fodor SP; Gebhard R; Lugtenburg J; Bogomolni RA; Mathies RA
    J Biol Chem; 1989 Nov; 264(31):18280-3. PubMed ID: 2808377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting the C = N stretching in protonated retinal Schiff base: a model study for bacteriorhodopsin and visual pigments.
    Baasov T; Friedman N; Sheves M
    Biochemistry; 1987 Jun; 26(11):3210-7. PubMed ID: 3607019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A vibrational analysis of rhodopsin and bacteriorhodopsin chromophore analogues: resonance Raman and infrared spectroscopy of chemically modified retinals and Schiff bases.
    Cookingham RE; Lewis A; Lemley AT
    Biochemistry; 1978 Oct; 17(22):4699-711. PubMed ID: 728379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Schiff base bond configuration in bacteriorhodopsin and in model compounds.
    Livnah N; Sheves M
    Biochemistry; 1993 Jul; 32(28):7223-8. PubMed ID: 8343511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin.
    Deng H; Callender RH
    Biochemistry; 1987 Nov; 26(23):7418-26. PubMed ID: 3427083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of the retinal protonated Schiff base counterion in rhodopsin.
    Han M; DeDecker BS; Smith SO
    Biophys J; 1993 Aug; 65(2):899-906. PubMed ID: 8105993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal isomerization in bacteriorhodopsin is controlled by specific chromophore-protein interactions. A study with noncovalent artificial pigments.
    Aharoni A; Ottolenghi M; Sheves M
    Biochemistry; 2001 Nov; 40(44):13310-9. PubMed ID: 11683641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretation of resonance Raman spectra of biological molecules.
    Warshel A
    Annu Rev Biophys Bioeng; 1977; 6():273-300. PubMed ID: 326148
    [No Abstract]   [Full Text] [Related]  

  • 12. Resonance Raman studies of the primary photochemical event in visual pigments.
    Aton B; Doukas AG; Narva D; Callender RH; Dinur U; Honig B
    Biophys J; 1980 Jan; 29(1):79-94. PubMed ID: 7260248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational analysis of the all-trans retinal protonated Schiff base.
    Smith SO; Myers AB; Mathies RA; Pardoen JA; Winkel C; van den Berg EM; Lugtenburg J
    Biophys J; 1985 May; 47(5):653-64. PubMed ID: 4016185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited state properties of visual pigments and bacteriorhodopsin.
    Honig B
    Ann N Y Acad Sci; 1981; 367():269-80. PubMed ID: 6942755
    [No Abstract]   [Full Text] [Related]  

  • 15. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy.
    Weidlich O; Ujj L; Jäger F; Atkinson GH
    Biophys J; 1997 May; 72(5):2329-41. PubMed ID: 9129836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water.
    Nina M; Roux B; Smith JC
    Biophys J; 1995 Jan; 68(1):25-39. PubMed ID: 7711248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy.
    Smith SO; Lugtenburg J; Mathies RA
    J Membr Biol; 1985; 85(2):95-109. PubMed ID: 4009698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities.
    Loppnow GR; Mathies RA
    Biophys J; 1988 Jul; 54(1):35-43. PubMed ID: 3416032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin.
    Huang L; Deng H; Weng G; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH
    Biochemistry; 1996 Jul; 35(26):8504-10. PubMed ID: 8679611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.