BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33453389)

  • 1. Deoxycholic acid-functionalised nanoparticles for oral delivery of rhein.
    Yao W; Xu Z; Sun J; Luo J; Wei Y; Zou J
    Eur J Pharm Sci; 2021 Apr; 159():105713. PubMed ID: 33453389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery.
    Fan W; Xia D; Zhu Q; Li X; He S; Zhu C; Guo S; Hovgaard L; Yang M; Gan Y
    Biomaterials; 2018 Jan; 151():13-23. PubMed ID: 29055774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low molecular weight chitosan-based conjugates for efficient Rhein oral delivery: synthesis, characterization, and pharmacokinetics.
    Luo J; Sun J; Luo X; Wei Y; Zheng H; Mu C; Yao W
    Drug Dev Ind Pharm; 2019 Jan; 45(1):96-104. PubMed ID: 30196732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, characterization, and in vivo study of rhein solid lipid nanoparticles for oral delivery.
    Feng H; Zhu Y; Fu Z; Li D
    Chem Biol Drug Des; 2017 Nov; 90(5):867-872. PubMed ID: 28432812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Delivery System for Oral Administration of Proteins/Peptides Through Bile Acid Transport Channels.
    Wu S; Bin W; Tu B; Li X; Wang W; Liao S; Sun C
    J Pharm Sci; 2019 Jun; 108(6):2143-2152. PubMed ID: 30721709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanosized Liposomes Containing Bile Salt: A Vesicular Nanocarrier for Enhancing Oral Bioavailability of BCS Class III Drug.
    Arafat M; Kirchhoefer C; Mikov M; Sarfraz M; Löbenberg R
    J Pharm Pharm Sci; 2017; 20(0):305-318. PubMed ID: 28885915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability.
    He W; Yang K; Fan L; Lv Y; Jin Z; Zhu S; Qin C; Wang Y; Yin L
    Int J Pharm; 2015 Nov; 495(1):9-18. PubMed ID: 26325310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting Apical Sodium-Dependent Bile Acid Transporter (ASBT)-Mediated Endocytosis with Multi-Functional Deoxycholic Acid Grafted Alginate Amide Nanoparticles as an Oral Insulin Delivery System.
    Razmjooei M; Hosseini SMH; Yousefi G; Golmakani MT; Eskandari MH
    Pharm Res; 2024 Feb; 41(2):335-353. PubMed ID: 38114803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, characterization, and in vivo study of rhein-loaded poly(lactic-co-glycolic acid) nanoparticles for oral delivery.
    Yuan Z; Gu X
    Drug Des Devel Ther; 2015; 9():2301-9. PubMed ID: 25960633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable nanoparticles for improved kidney bioavailability of rhein: preparation, characterization, plasma, and kidney pharmacokinetics.
    Wei Y; Luo X; Guan J; Ma J; Zhong Y; Luo J; Li F
    Drug Dev Ind Pharm; 2017 Nov; 43(11):1885-1891. PubMed ID: 28692315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, screening and nanocrystals preparation of rhein amide derivatives.
    Chen L; Zhang J; Rong J; Liu Y; Zhao J; Cui Q; Wang X; Liang X; Pan H; Liu H
    J Microencapsul; 2018 Jun; 35(4):313-326. PubMed ID: 29683357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Preparation and in vitro evaluation of rhein-loaded PEG-PCL-PEI nanoparticles].
    Chen DF; Zhu YQ; Zhang Y; Wang LY; Wei YH
    Zhongguo Zhong Yao Za Zhi; 2017 Aug; 42(16):3121-3130. PubMed ID: 29171230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin.
    Ji H; Tang J; Li M; Ren J; Zheng N; Wu L
    Drug Deliv; 2016; 23(2):459-70. PubMed ID: 24892628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment.
    Bagre AP; Jain K; Jain NK
    Int J Pharm; 2013 Nov; 456(1):31-40. PubMed ID: 23994363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral delivery of imatinib through galactosylated polymeric nanoparticles to explore the contribution of a saccharide ligand to absorption.
    Li Y; Yang B; Zhang X
    Int J Pharm; 2019 Sep; 568():118508. PubMed ID: 31299337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced bioavailability of tripterine through lipid nanoparticles using broccoli-derived lipids as a carrier material.
    Li W; Zhang T; Ye Y; Zhang X; Wu B
    Int J Pharm; 2015 Nov; 495(2):948-55. PubMed ID: 26453780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization,
    Patel MH; Mundada VP; Sawant KK
    Drug Dev Ind Pharm; 2019 Aug; 45(8):1242-1257. PubMed ID: 30880488
    [No Abstract]   [Full Text] [Related]  

  • 18. Atazanavir-loaded Eudragit RL 100 nanoparticles to improve oral bioavailability: optimization and in vitro/in vivo appraisal.
    Singh G; Pai RS
    Drug Deliv; 2016; 23(2):532-9. PubMed ID: 24963752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Stability and Enhanced Oral Bioavailability of Atorvastatin Loaded Stearic Acid Modified Gelatin Nanoparticles.
    Shilpi D; Kushwah V; Agrawal AK; Jain S
    Pharm Res; 2017 Jul; 34(7):1505-1516. PubMed ID: 28466393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms.
    Xie X; Tao Q; Zou Y; Zhang F; Guo M; Wang Y; Wang H; Zhou Q; Yu S
    J Agric Food Chem; 2011 Sep; 59(17):9280-9. PubMed ID: 21797282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.