These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33453437)

  • 1. Comparison of path-based centrality measures in protein-protein interaction networks revealed proteins with phenotypic relevance during adaptation to changing nitrogen environments.
    Gilbert M; Li Z; Wu XN; Rohr L; Gombos S; Harter K; Schulze WX
    J Proteomics; 2021 Mar; 235():104114. PubMed ID: 33453437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions.
    Li M; Zheng R; Zhang H; Wang J; Pan Y
    Methods; 2014 Jun; 67(3):325-33. PubMed ID: 24565748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.
    Mistry D; Wise RP; Dickerson JA
    PLoS One; 2017; 12(11):e0187091. PubMed ID: 29121073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks.
    Li M; Lu Y; Wang J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):372-83. PubMed ID: 26357224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of essential proteins from weighted protein-protein interaction networks.
    Li M; Wang JX; Wang H; Pan Y
    J Bioinform Comput Biol; 2013 Jun; 11(3):1341002. PubMed ID: 23796179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for predicting essential proteins based on dynamic network topology and complex information.
    Luo J; Kuang L
    Comput Biol Chem; 2014 Oct; 52():34-42. PubMed ID: 25179858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic survey of centrality measures for protein-protein interaction networks.
    Ashtiani M; Salehzadeh-Yazdi A; Razaghi-Moghadam Z; Hennig H; Wolkenhauer O; Mirzaie M; Jafari M
    BMC Syst Biol; 2018 Jul; 12(1):80. PubMed ID: 30064421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large accessory protein interactome is rewired across environments.
    Liu Z; Miller D; Li F; Liu X; Levy SF
    Elife; 2020 Sep; 9():. PubMed ID: 32924934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centralities in simplicial complexes. Applications to protein interaction networks.
    Estrada E; Ross GJ
    J Theor Biol; 2018 Feb; 438():46-60. PubMed ID: 29128505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A local average connectivity-based method for identifying essential proteins from the network level.
    Li M; Wang J; Chen X; Wang H; Pan Y
    Comput Biol Chem; 2011 Jun; 35(3):143-50. PubMed ID: 21704260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The organisational structure of protein networks: revisiting the centrality-lethality hypothesis.
    Raman K; Damaraju N; Joshi GK
    Syst Synth Biol; 2014 Mar; 8(1):73-81. PubMed ID: 24592293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying essential proteins from active PPI networks constructed with dynamic gene expression.
    Xiao Q; Wang J; Peng X; Wu FX; Pan Y
    BMC Genomics; 2015; 16 Suppl 3(Suppl 3):S1. PubMed ID: 25707432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.
    Mallik MK
    J Theor Biol; 2018 Feb; 438():78-91. PubMed ID: 29154777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clone temporal centrality measures for incomplete sequences of graph snapshots.
    Hanke M; Foraita R
    BMC Bioinformatics; 2017 May; 18(1):261. PubMed ID: 28511665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized network centrality and essentiality in the yeast-protein interaction network.
    Park K; Kim D
    Proteomics; 2009 Nov; 9(22):5143-54. PubMed ID: 19771559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of essential proteins based on edge clustering coefficient.
    Wang J; Li M; Wang H; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1070-80. PubMed ID: 22084147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of protein interaction network dynamics in yeast.
    Celaj A; Schlecht U; Smith JD; Xu W; Suresh S; Miranda M; Aparicio AM; Proctor M; Davis RW; Roth FP; St Onge RP
    Mol Syst Biol; 2017 Jul; 13(7):934. PubMed ID: 28705884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ensemble framework for identifying essential proteins.
    Zhang X; Xiao W; Acencio ML; Lemke N; Wang X
    BMC Bioinformatics; 2016 Aug; 17(1):322. PubMed ID: 27557880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in Saccharomyces cerevisiae.
    Jarnuczak AF; Eyers CE; Schwartz JM; Grant CM; Hubbard SJ
    Proteomics; 2015 Sep; 15(18):3126-39. PubMed ID: 25689132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.