BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33453479)

  • 1. An asymmetric pulsed current-assisted electrochemical method for Sr(Ⅱ) extraction using supramolecular composites.
    Wang W; Luo J; Wei W; Liu S; He J; Ma J
    Chemosphere; 2021 May; 271():129531. PubMed ID: 33453479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the strontium (Sr(II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater.
    Hong HJ; Ryu J; Park IS; Ryu T; Chung KS; Kim BG
    J Environ Manage; 2016 Jan; 165():263-270. PubMed ID: 26454070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of highly stable zeolite-alginate foam composite for strontium(
    Hong HJ; Kim BG; Ryu J; Park IS; Chung KS; Lee SM; Lee JB; Jeong HS; Kim H; Ryu T
    J Environ Manage; 2018 Jan; 205():192-200. PubMed ID: 28985598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous removal of radioactive cesium and strontium from seawater using a highly efficient Prussian blue-embedded alginate aerogel.
    Eun S; Ryu J; Kim H; Hong HJ; Kim S
    J Environ Manage; 2021 Nov; 297():113389. PubMed ID: 34325366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly stable and magnetically separable alginate/Fe
    Hong HJ; Jeong HS; Kim BG; Hong J; Park IS; Ryu T; Chung KS; Kim H; Ryu J
    Chemosphere; 2016 Dec; 165():231-238. PubMed ID: 27657815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The recovery of strontium ions from seawater reverse osmosis brine using novel composite materials of ferrocyanides modified roasted date pits.
    Al-Absi RS; Khan M; Abu-Dieyeh MH; Ben-Hamadou R; Nasser MS; Al-Ghouti MA
    Chemosphere; 2023 Jan; 311(Pt 2):137043. PubMed ID: 36336019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High strontium adsorption performance of layered zirconium phosphate intercalated with a crown ether.
    Wu L; Wang H; Kong X; Wei H; Chen S; Chi L
    RSC Adv; 2023 Feb; 13(10):6346-6355. PubMed ID: 36824231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation Potential of Saccharina japonica and Sargassum horneri (Phaeophyceae): Biosorption Study of Strontium.
    Wang X; Shan T; Pang S
    Bull Environ Contam Toxicol; 2018 Oct; 101(4):501-505. PubMed ID: 30178204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strontium Ion Removal From Artificial Seawater Using a Combination of Adsorption With Biochar and Precipitation by Blowing CO
    Guo Y; Hong Nhung NT; Dai X; He C; Wang Y; Wei Y; Fujita T
    Front Bioeng Biotechnol; 2022; 10():819407. PubMed ID: 35223790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized mesoporous silicas with crown ether moieties for selective adsorption of lithium ions in artificial sea water.
    Sung SP; Moorthy MS; Song HJ; Ha CS
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8845-51. PubMed ID: 25958615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modified and functionalized graphene oxide membranes for separation of strontium from aqueous solutions.
    Vishwakarma RK; Narayanam PK; R U; K S
    J Environ Manage; 2021 Nov; 298():113443. PubMed ID: 34385117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and simultaneous determination of Strontium-89 and Strontium-90 in seawater.
    Tayeb M; Dai X; Sdraulig S
    J Environ Radioact; 2016 Mar; 153():214-221. PubMed ID: 26803402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of barium and strontium from aqueous solution using zeolite 4A.
    Araissi M; Ayed I; Elaloui E; Moussaoui Y
    Water Sci Technol; 2016; 73(7):1628-36. PubMed ID: 27054734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molten salt synthesis of MXene-derived hierarchical titanate for effective strontium removal.
    Wang S; Zhang P; Ma E; Chen S; Li Z; Yuan L; Zu J; Wang L; Shi W
    J Hazard Mater; 2024 May; 469():134079. PubMed ID: 38521042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution coefficients (Kd) of strontium and significance of oxides and organic matter in controlling its partitioning in coastal regions of Japan.
    Takata H; Tagami K; Aono T; Uchida S
    Sci Total Environ; 2014 Aug; 490():979-86. PubMed ID: 24914527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new technique for removing strontium from seawater by coprecipitation with barite.
    Tokunaga K; Kozai N; Takahashi Y
    J Hazard Mater; 2018 Oct; 359():307-315. PubMed ID: 30045002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese dioxide-loaded mesoporous SBA-15 silica composites for effective removal of strontium from aqueous solution.
    Dan H; Ding Y; Wang E; Yang W; He X; Chen L; Xian Q; Yi F; Zhu W
    Environ Res; 2020 Dec; 191():110040. PubMed ID: 32805246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: a comparative study.
    Song Y; Du Y; Lv D; Ye G; Wang J
    J Hazard Mater; 2014 Jun; 274():221-8. PubMed ID: 24794813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur-modified zeolite A as a low-cost strontium remover with improved selectivity for radioactive strontium.
    Yang HM; Jeon H; Lee Y; Choi M
    Chemosphere; 2022 Jul; 299():134309. PubMed ID: 35339528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of Sr(II) from water by mercerized bacterial cellulose membrane modified with EDTA.
    Cheng R; Kang M; Zhuang S; Shi L; Zheng X; Wang J
    J Hazard Mater; 2019 Feb; 364():645-653. PubMed ID: 30408766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.