These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33453606)

  • 1. Charting the low-loss region in electron energy loss spectroscopy with machine learning.
    Roest LI; van Heijst SE; Maduro L; Rojo J; Conesa-Boj S
    Ultramicroscopy; 2021 Mar; 222():113202. PubMed ID: 33453606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy.
    Kimoto K; Kothleitner G; Grogger W; Matsui Y; Hofer F
    Micron; 2005; 36(2):185-9. PubMed ID: 15629650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially Resolved Band Gap and Dielectric Function in Two-Dimensional Materials from Electron Energy Loss Spectroscopy.
    Brokkelkamp A; Ter Hoeve J; Postmes I; van Heijst SE; Maduro L; Davydov AV; Krylyuk S; Rojo J; Conesa-Boj S
    J Phys Chem A; 2022 Feb; 126(7):1255-1262. PubMed ID: 35167301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bandgap measurement of high refractive index materials by off-axis EELS.
    Vatanparast M; Egoavil R; Reenaas TW; Verbeeck J; Holmestad R; Vullum PE
    Ultramicroscopy; 2017 Nov; 182():92-98. PubMed ID: 28666140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure analysis of (In, Ga, Al) N heterostructures on the nanometre scale using EELS.
    Lakner H; Rafferty B; Brockt G
    J Microsc; 1999 Apr; 194(1):79-83. PubMed ID: 10320542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-Principles Calculation of Optoelectronic Properties in 2D Materials: The Polytypic WS
    Maduro L; van Heijst SE; Conesa-Boj S
    ACS Phys Chem Au; 2022 May; 2(3):191-198. PubMed ID: 35637785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical properties and bandgaps from low loss EELS: pitfalls and solutions.
    Stöger-Pollach M
    Micron; 2008 Dec; 39(8):1092-110. PubMed ID: 18395457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of the electronic structure of carbon films using electron energy loss spectroscopy.
    Alexandro I; Papworth AJ; Rafferty B; Amaratunga GAJ ; Kiely CJ; Brown LM
    Ultramicroscopy; 2001 Nov; 90(1):39-45. PubMed ID: 11794628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid pixel direct detector for electron energy loss spectroscopy.
    Plotkin-Swing B; Corbin GJ; De Carlo S; Dellby N; Hoermann C; Hoffman MV; Lovejoy TC; Meyer CE; Mittelberger A; Pantelic R; Piazza L; Krivanek OL
    Ultramicroscopy; 2020 Oct; 217():113067. PubMed ID: 32801089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale EELS analysis of dielectric function and bandgap properties in gaN and related materials.
    Brockt G; Lakner H
    Micron; 2000 Aug; 31(4):435-40. PubMed ID: 10741613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of dielectric function and bandgap of germanium telluride using monochromated electron energy-loss spectroscopy.
    Oh JS; Jo KJ; Kang MC; An BS; Kwon Y; Lim HW; Cho MH; Baik H; Yang CW
    Micron; 2023 Sep; 172():103487. PubMed ID: 37285687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative of machine learning classification strategies for electron energy loss spectroscopy: Support vector machines and artificial neural networks.
    Del-Pozo-Bueno D; Kepaptsoglou D; Peiró F; Estradé S
    Ultramicroscopy; 2023 Nov; 253():113828. PubMed ID: 37556961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the capabilities of monochromated electron energy loss spectroscopy in the infrared regime.
    Hachtel JA; Lupini AR; Idrobo JC
    Sci Rep; 2018 Apr; 8(1):5637. PubMed ID: 29618757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron energy loss spectroscopy investigation through a nano ablated uranium dioxide sample.
    Degueldre C; Schaeublin R; Krbanjevic J; Minikus E
    Talanta; 2013 Mar; 106():408-13. PubMed ID: 23598145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support vector machine for EELS oxidation state determination.
    Del-Pozo-Bueno D; Peiró F; Estradé S
    Ultramicroscopy; 2021 Feb; 221():113190. PubMed ID: 33321423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of quantitative electron energy loss spectroscopy in the low loss region: phosphorus L-edge.
    Wang YY; Ho R; Shao Z; Somlyo AP
    Ultramicroscopy; 1992; 41(1-3):11-31. PubMed ID: 1641912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of resolution in core-loss and low-loss spectroscopy in a monochromated microscope.
    Lazar S; Botton GA; Zandbergen HW
    Ultramicroscopy; 2006; 106(11-12):1091-103. PubMed ID: 16872750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introduction to the standard reference data of electron energy loss spectra and their database: eel.geri.re.kr.
    Chae JE; Kim JS; Nam SY; Kim MS; Park J
    Appl Microsc; 2019 Dec; 50(1):2. PubMed ID: 33580343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bandgap measurement of thin dielectric films using monochromated STEM-EELS.
    Park J; Heo S; Chung JG; Kim H; Lee H; Kim K; Park GS
    Ultramicroscopy; 2009 Aug; 109(9):1183-8. PubMed ID: 19515492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.