These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 33453924)

  • 41. Advanced surface passivation for high-sensitivity studies of biomolecular condensates.
    Yao RW; Rosen MK
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2403013121. PubMed ID: 38781207
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Active microrheology of protein condensates using colloidal probe-AFM.
    Li X; van der Gucht J; Erni P; de Vries R
    J Colloid Interface Sci; 2023 Feb; 632(Pt B):357-366. PubMed ID: 36436394
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response.
    Morishita K; Watanabe K; Naguro I; Ichijo H
    Cell Rep; 2023 Apr; 42(4):112315. PubMed ID: 37019112
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Capillary forces generated by biomolecular condensates.
    Gouveia B; Kim Y; Shaevitz JW; Petry S; Stone HA; Brangwynne CP
    Nature; 2022 Sep; 609(7926):255-264. PubMed ID: 36071192
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative theory for the diffusive dynamics of liquid condensates.
    Hubatsch L; Jawerth LM; Love C; Bauermann J; Tang TD; Bo S; Hyman AA; Weber CA
    Elife; 2021 Oct; 10():. PubMed ID: 34636323
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Viscoelasticity of biomolecular condensates conforms to the Jeffreys model.
    Zhou HX
    J Chem Phys; 2021 Jan; 154(4):041103. PubMed ID: 33514117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Incorporation and Assembly of a Light-Emitting Enzymatic Reaction into Model Protein Condensates.
    Guan M; Garabedian MV; Leutenegger M; Schuster BS; Good MC; Hammer DA
    Biochemistry; 2021 Oct; 60(42):3137-3151. PubMed ID: 34648259
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ALS-linked mutations impair UBQLN2 stress-induced biomolecular condensate assembly in cells.
    Riley JF; Fioramonti PJ; Rusnock AK; Hehnly H; Castañeda CA
    J Neurochem; 2021 Oct; 159(1):145-155. PubMed ID: 34129687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shear relaxation governs fusion dynamics of biomolecular condensates.
    Ghosh A; Kota D; Zhou HX
    Nat Commun; 2021 Oct; 12(1):5995. PubMed ID: 34645832
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease.
    Rai SK; Savastano A; Singh P; Mukhopadhyay S; Zweckstetter M
    Protein Sci; 2021 Jul; 30(7):1294-1314. PubMed ID: 33930220
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extreme dynamics in a biomolecular condensate.
    Galvanetto N; Ivanović MT; Chowdhury A; Sottini A; Nüesch MF; Nettels D; Best RB; Schuler B
    Nature; 2023 Jul; 619(7971):876-883. PubMed ID: 37468629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A New Phase for WNK Kinase Signaling Complexes as Biomolecular Condensates.
    Boyd-Shiwarski CR; Shiwarski DJ; Subramanya AR
    Physiology (Bethesda); 2024 Apr; ():. PubMed ID: 38624245
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry.
    Abyzov A; Blackledge M; Zweckstetter M
    Chem Rev; 2022 Mar; 122(6):6719-6748. PubMed ID: 35179885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates.
    Ginell GM; Holehouse AS
    Methods Mol Biol; 2023; 2563():95-116. PubMed ID: 36227469
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid-liquid phase separation.
    Wu S; Wen J; Perrett S
    Essays Biochem; 2022 Dec; 66(7):891-900. PubMed ID: 36524527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-Time Study of Protein Phase Separation with Spatiotemporal Analysis of Single-Nanoparticle Trajectories.
    Pan Q; Sun D; Xue J; Hao J; Zhao H; Lin X; Yu L; He Y
    ACS Nano; 2021 Jan; 15(1):539-549. PubMed ID: 33348982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales.
    Polyansky AA; Gallego LD; Efremov RG; Köhler A; Zagrovic B
    Elife; 2023 Jul; 12():. PubMed ID: 37470705
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuronal biomolecular condensates and their implications in neurodegenerative diseases.
    Nam J; Gwon Y
    Front Aging Neurosci; 2023; 15():1145420. PubMed ID: 37065458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.