These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 33453932)
1. Enzymatic control over coacervation. Nakashima KK; André AAM; Spruijt E Methods Enzymol; 2021; 646():353-389. PubMed ID: 33453932 [TBL] [Abstract][Full Text] [Related]
2. Reversible photocontrol of DNA coacervation. Lafon S; Martin N Methods Enzymol; 2021; 646():329-351. PubMed ID: 33453931 [TBL] [Abstract][Full Text] [Related]
3. Coacervate Droplets for Synthetic Cells. Lin Z; Beneyton T; Baret JC; Martin N Small Methods; 2023 Dec; 7(12):e2300496. PubMed ID: 37462244 [TBL] [Abstract][Full Text] [Related]
4. Biomolecular Chemistry in Liquid Phase Separated Compartments. Nakashima KK; Vibhute MA; Spruijt E Front Mol Biosci; 2019; 6():21. PubMed ID: 31001538 [TBL] [Abstract][Full Text] [Related]
5. Self-programmed enzyme phase separation and multiphase coacervate droplet organization. Karoui H; Seck MJ; Martin N Chem Sci; 2021 Jan; 12(8):2794-2802. PubMed ID: 34164043 [TBL] [Abstract][Full Text] [Related]
6. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602 [TBL] [Abstract][Full Text] [Related]
7. Complex coacervates as artificial membraneless organelles and protocells. Deng NN Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586 [TBL] [Abstract][Full Text] [Related]
8. Synthetic Membraneless Droplets for Synaptic-Like Clustering of Lipid Vesicles. Li Q; Song Q; Guo W; Cao Y; Cui X; Chen D; Shum HC Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202313096. PubMed ID: 37728515 [TBL] [Abstract][Full Text] [Related]
9. The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervate Droplets. Späth F; Maier AS; Stasi M; Bergmann AM; Halama K; Wenisch M; Rieger B; Boekhoven J Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202309318. PubMed ID: 37549224 [TBL] [Abstract][Full Text] [Related]
10. Recent advances in design and application of synthetic membraneless organelles. Wan L; Zhu Y; Zhang W; Mu W Biotechnol Adv; 2024; 73():108355. PubMed ID: 38588907 [TBL] [Abstract][Full Text] [Related]
11. Enzyme-active liquid coacervate microdroplets as artificial membraneless organelles for intracellular ROS scavenging. Chen Y; Yuan M; Zhang Y; Zhou S; Wang K; Wu Z; Liu J Biomater Sci; 2022 Aug; 10(16):4588-4595. PubMed ID: 35792669 [TBL] [Abstract][Full Text] [Related]
12. pH-Controlled Coacervate-Membrane Interactions within Liposomes. Last MGF; Deshpande S; Dekker C ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914 [TBL] [Abstract][Full Text] [Related]
13. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein-Polymer Complex Coacervates. Biswas S; Hecht AL; Noble SA; Huang Q; Gillilan RE; Xu AY Biomacromolecules; 2023 Nov; 24(11):4771-4782. PubMed ID: 37815312 [TBL] [Abstract][Full Text] [Related]
14. Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition. Kojima T; Takayama S ACS Appl Mater Interfaces; 2018 Sep; 10(38):32782-32791. PubMed ID: 30179001 [TBL] [Abstract][Full Text] [Related]
15. Spatiotemporal control of coacervate formation within liposomes. Deshpande S; Brandenburg F; Lau A; Last MGF; Spoelstra WK; Reese L; Wunnava S; Dogterom M; Dekker C Nat Commun; 2019 Apr; 10(1):1800. PubMed ID: 30996302 [TBL] [Abstract][Full Text] [Related]
16. Liquid-Liquid Phase Separation of Peptide/Oligonucleotide Complexes in Crowded Macromolecular Media. Bai Q; Zhang Q; Jing H; Chen J; Liang D J Phys Chem B; 2021 Jan; 125(1):49-57. PubMed ID: 33373232 [TBL] [Abstract][Full Text] [Related]
17. Peptide-based coacervates in therapeutic applications. Ma L; Fang X; Wang C Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257 [TBL] [Abstract][Full Text] [Related]
18. Programmable Zwitterionic Droplets as Biomolecular Sorters and Model of Membraneless Organelles. Capasso Palmiero U; Paganini C; Kopp MRG; Linsenmeier M; Küffner AM; Arosio P Adv Mater; 2022 Jan; 34(4):e2104837. PubMed ID: 34664748 [TBL] [Abstract][Full Text] [Related]
19. Spontaneous Transition of Spherical Coacervate to Vesicle-Like Compartment. Choi H; Hong Y; Najafi S; Kim SY; Shea JE; Hwang DS; Choi YS Adv Sci (Weinh); 2024 Feb; 11(7):e2305978. PubMed ID: 38063842 [TBL] [Abstract][Full Text] [Related]
20. Programmable and Chemically Fueled DNA Coacervates by Transient Liquid-Liquid Phase Separation. Deng J; Walther A Chem; 2020 Dec; 6(12):3329-3343. PubMed ID: 35252623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]