BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 3345441)

  • 1. Carnosine-like immunoreactivity in the olfactory bulb of the rat: an electron microscopic study.
    Sakai M; Kani K; Karasawa N; Yoshida M; Nagatsu I
    Brain Res; 1988 Jan; 438(1-2):335-8. PubMed ID: 3345441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Immunohistochemical study on the primary olfactory neuron of rat and suncus].
    Ashihara M; Nishimura T; Sakai M; Nagatsu I
    Nihon Jibiinkoka Gakkai Kaiho; 1989 Dec; 92(12):2039-46. PubMed ID: 2695608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carnosine-like immunoreactivity in the primary olfactory neuron of the rat.
    Sakai M; Yoshida M; Karasawa N; Teramura M; Ueda H; Nagatsu I
    Experientia; 1987 Mar; 43(3):298-300. PubMed ID: 3549349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb--IV. Intraglomerular synapses of tyrosine hydroxylase-immunoreactive neurons.
    Toida K; Kosaka K; Aika Y; Kosaka T
    Neuroscience; 2000; 101(1):11-7. PubMed ID: 11068132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calretinin-immunoreactivity in mitral cells of the rat olfactory bulb.
    Wouterlood FG; Hrtig W
    Brain Res; 1995 Jun; 682(1-2):93-100. PubMed ID: 7552332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular localization of carnosine-like and anserine-like immunoreactivities in rodent and avian central nervous system.
    Biffo S; Grillo M; Margolis FL
    Neuroscience; 1990; 35(3):637-51. PubMed ID: 2199844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb--II. Prominent differences in the intraglomerular dendritic arborization and their relationship to olfactory nerve terminals.
    Kosaka K; Toida K; Margolis FL; Kosaka T
    Neuroscience; 1997 Feb; 76(3):775-86. PubMed ID: 9135050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of intraglomerular dendritic tufts of mitral cells and their contacts with olfactory nerve terminals and calbindin-immunoreactive type 2 periglomerular neurons.
    Kosaka K; Aika Y; Toida K; Kosaka T
    J Comp Neurol; 2001 Nov; 440(3):219-35. PubMed ID: 11745619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptophysin and synaptoporin expression in the developing rat olfactory system.
    Bergmann M; Schuster T; Grabs D; Marquèze-Pouey B; Betz H; Traurig H; Mayerhofer A; Gratzl M
    Brain Res Dev Brain Res; 1993 Aug; 74(2):235-44. PubMed ID: 8403385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denervation in the primary olfactory pathway of mice. II. Effects on carnosine and other amine compounds.
    Ferriero D; Marogolis FL
    Brain Res; 1975 Aug; 94(1):75-86. PubMed ID: 167914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carnosine-, calcitonin gene-related peptide- and tyrosine hydroxylase-immunoreactivity in the mouse olfactory bulb following peripheral denervation.
    Biffo S; DeLucia R; Mulatero B; Margolis F; Fasolo A
    Brain Res; 1990 Oct; 528(2):353-7. PubMed ID: 1980226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of cholecystokinin-like immunoreactivity in the rat main olfactory bulb.
    Seroogy KB; Brecha N; Gall C
    J Comp Neurol; 1985 Sep; 239(4):373-83. PubMed ID: 2864364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carnosine--an olfactory bulb peptide.
    Neidle A; Kandera J
    Brain Res; 1974 Nov; 80(2):359-64. PubMed ID: 4423212
    [No Abstract]   [Full Text] [Related]  

  • 14. New automated fluorometric peptide microassay for carnosine in mouse olfactory bulb.
    Wideman J; Brink L; Stein S
    Anal Biochem; 1978 Jun; 86(2):670-8. PubMed ID: 655422
    [No Abstract]   [Full Text] [Related]  

  • 15. Intraglomerular dendritic link connected by gap junctions and chemical synapses in the mouse main olfactory bulb: electron microscopic serial section analyses.
    Kosaka T; Kosaka K
    Neuroscience; 2005; 131(3):611-25. PubMed ID: 15730867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH-diaphorase activity in the olfactory system of the hamster and rat.
    Davis BJ
    J Comp Neurol; 1991 Dec; 314(3):493-511. PubMed ID: 1687689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial distribution of synapses on tyrosine hydroxylase-expressing juxtaglomerular cells in the mouse olfactory glomerulus.
    Kiyokage E; Kobayashi K; Toida K
    J Comp Neurol; 2017 Apr; 525(5):1059-1074. PubMed ID: 27864931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for coexistence of GABA and dopamine in neurons of the rat olfactory bulb.
    Gall CM; Hendry SH; Seroogy KB; Jones EG; Haycock JW
    J Comp Neurol; 1987 Dec; 266(3):307-18. PubMed ID: 2891733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic distribution of individually labeled mitral cells in the external plexiform layer of the mouse olfactory bulb.
    Matsuno T; Kiyokage E; Toida K
    J Comp Neurol; 2017 May; 525(7):1633-1648. PubMed ID: 27864926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carnosine, nerve growth factor receptor and tyrosine hydroxylase expression during the ontogeny of the rat olfactory system.
    Biffo S; Martí E; Fasolo A
    J Chem Neuroanat; 1992; 5(1):51-62. PubMed ID: 1376608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.