These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33454463)

  • 1. A finite element investigation on design parameters of bare and polymer-covered self-expanding wire braided stents.
    McKenna CG; Vaughan TJ
    J Mech Behav Biomed Mater; 2021 Mar; 115():104305. PubMed ID: 33454463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental evaluation of the mechanics of bare and polymer-covered self-expanding wire braided stents.
    McKenna CG; Vaughan TJ
    J Mech Behav Biomed Mater; 2020 Mar; 103():103549. PubMed ID: 31783281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Computational Framework Examining the Mechanical Behaviour of Bare and Polymer-Covered Self-Expanding Laser-Cut Stents.
    McKenna CG; Vaughan TJ
    Cardiovasc Eng Technol; 2022 Jun; 13(3):466-480. PubMed ID: 34850370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental investigation of the mechanical performance of PLLA wire-braided stents.
    Lucchetti A; Emonts C; Idrissi A; Gries T; Vaughan TJ
    J Mech Behav Biomed Mater; 2023 Feb; 138():105568. PubMed ID: 36459705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical modeling of bare and polymer-covered braided stents using torsional and tensile springs connectors.
    Giuliodori A; Hernández JA; Fernandez-Sanchez D; Galve I; Soudah E
    J Biomech; 2021 Jun; 123():110459. PubMed ID: 34022531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Finite Element Investigation on Material and Design Parameters of Ventricular Septal Defect Occluder Devices.
    Zhang Z; Xiong Y; Hu J; Guo X; Xu X; Chen J; Wang Y; Chen Y
    J Funct Biomater; 2022 Oct; 13(4):. PubMed ID: 36278651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Looped ends versus open ends braided stent: A comparison of the mechanical behaviour using analytical and numerical methods.
    Shanahan C; Tiernan P; Tofail SAM
    J Mech Behav Biomed Mater; 2017 Nov; 75():581-591. PubMed ID: 28863400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of computational modelling techniques for braided stent analysis.
    Kelly N; McGrath DJ; Sweeney CA; Kurtenbach K; Grogan JA; Jockenhoevel S; O'Brien BJ; Bruzzi M; McHugh PE
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1334-1344. PubMed ID: 31502888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of cover effects on bare stent mechanical response.
    McGrath DJ; O'Brien B; Bruzzi M; Kelly N; Clauser J; Steinseifer U; McHugh PE
    J Mech Behav Biomed Mater; 2016 Aug; 61():567-580. PubMed ID: 27140523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evaluation of the radial and axial force of self-expanding esophageal stents.
    Hirdes MM; Vleggaar FP; de Beule M; Siersema PD
    Endoscopy; 2013 Dec; 45(12):997-1005. PubMed ID: 24288220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic recovery of polymeric braided stents under cyclic loading: Preliminary assessment.
    Jaziri H; Mokhtar S; Chakfe N; Heim F; Abdessalem SB
    J Mech Behav Biomed Mater; 2019 Oct; 98():131-136. PubMed ID: 31229905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation mechanics of self-expanding venous stents: Modelling and experiments.
    Hejazi M; Sassani F; Gagnon J; Hsiang Y; Phani AS
    J Biomech; 2021 May; 120():110333. PubMed ID: 33730560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling of braided venous stents - Effect of design features and device-tissue interaction on stent performance.
    Ubachs R; van der Sluis O; Smith S; Mertens J
    J Mech Behav Biomed Mater; 2023 Jun; 142():105857. PubMed ID: 37099918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hazardous boundary of Poly(L-lactic acid) braided stent design: Limited elastic deformability of polymer materials.
    Li J; Cheng J; Hu X; Liu J; Tian Y; Wu G; Chen L; Zhang Y; Zhao G; Ni Z
    J Mech Behav Biomed Mater; 2023 Feb; 138():105628. PubMed ID: 36543082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical characterizations of braided composite stents made of helical polyethylene terephthalate strips and NiTi wires.
    Zheng Q; Dong P; Li Z; Han X; Zhou C; An M; Gu L
    Nanotechnol Rev; 2019 Jan; 8(1):168-174. PubMed ID: 35966892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual optimization of self-expandable braided wire stents.
    De Beule M; Van Cauter S; Mortier P; Van Loo D; Van Impe R; Verdonck P; Verhegghe B
    Med Eng Phys; 2009 May; 31(4):448-53. PubMed ID: 19117791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed-braided stent: An effective way to improve comprehensive mechanical properties of poly (L-lactic acid) self-expandable braided stent.
    Liu M; Tian Y; Cheng J; Zhang Y; Zhao G; Ni Z
    J Mech Behav Biomed Mater; 2022 Apr; 128():105123. PubMed ID: 35183885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical methods for braided stents design and comparison with FEA.
    Zaccaria A; Pennati G; Petrini L
    J Mech Behav Biomed Mater; 2021 Jul; 119():104560. PubMed ID: 33930655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.