These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3345449)

  • 1. A new class of small inhibitory interneurones in the lamprey spinal cord.
    Buchanan JT; Grillner S
    Brain Res; 1988 Jan; 438(1-2):404-7. PubMed ID: 3345449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newly identified 'glutamate interneurons' and their role in locomotion in the lamprey spinal cord.
    Buchanan JT; Grillner S
    Science; 1987 Apr; 236(4799):312-4. PubMed ID: 3563512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat.
    Enríquez-Denton M; Nielsen J; Perreault MC; Morita H; Petersen N; Hultborn H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):623-37. PubMed ID: 10922013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the control of myotomal motoneurones during "fictive swimming" in the lamprey spinal cord in vitro.
    Russell DF; Wallén P
    Acta Physiol Scand; 1983 Feb; 117(2):161-70. PubMed ID: 6869028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activity of spinal commissural interneurons during fictive locomotion in the lamprey.
    Biró Z; Hill RH; Grillner S
    J Neurophysiol; 2008 Aug; 100(2):716-22. PubMed ID: 18509075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of excitatory interneurons contributing to generation of locomotion in lamprey: structure, pharmacology, and function.
    Buchanan JT; Grillner S; Cullheim S; Risling M
    J Neurophysiol; 1989 Jul; 62(1):59-69. PubMed ID: 2754481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of strychnine on fictive swimming in the lamprey: evidence for glycinergic inhibition, discrepancies with model predictions, and novel modulatory rhythms.
    McPherson DR; Buchanan JT; Kasicki S
    J Comp Physiol A; 1994 Sep; 175(3):311-21. PubMed ID: 7932300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord.
    Dale N
    J Physiol; 1985 Jun; 363():61-70. PubMed ID: 4020706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey.
    Rovainen CM
    J Neurophysiol; 1985 Oct; 54(4):959-77. PubMed ID: 2999351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductance increases produced by glycine and gamma-aminobutyric acid in lamprey interneurones.
    Homma S; Rovainen CM
    J Physiol; 1978 Jun; 279():231-52. PubMed ID: 671350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identified neurons in the lamprey spinal cord and their roles in fictive swimming.
    Rovainen CM
    Symp Soc Exp Biol; 1983; 37():305-30. PubMed ID: 6679117
    [No Abstract]   [Full Text] [Related]  

  • 13. Phasic modulation of reticulospinal neurones during fictive locomotion and other types of spinal motor activity in lamprey.
    Kasicki S; Grillner S; Ohta Y; Dubuc R; Brodin L
    Brain Res; 1989 Apr; 484(1-2):203-16. PubMed ID: 2713681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord.
    Cangiano L; Grillner S
    J Neurosci; 2005 Jan; 25(4):923-35. PubMed ID: 15673673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activities of identified interneurons, motoneurons, and muscle fibers during fictive swimming in the lamprey and effects of reticulospinal and dorsal cell stimulation.
    Buchanan JT; Cohen AH
    J Neurophysiol; 1982 May; 47(5):948-60. PubMed ID: 7086476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monosynaptic excitatory amino acid transmission from the posterior rhombencephalic reticular nucleus to spinal neurons involved in the control of locomotion in lamprey.
    Ohta Y; Grillner S
    J Neurophysiol; 1989 Nov; 62(5):1079-89. PubMed ID: 2555456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lamprey spinal interneurons and their roles in swimming activity.
    Buchanan JT
    Brain Behav Evol; 1996; 48(5):287-96. PubMed ID: 8932869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central modulation of stretch receptor neurons during fictive locomotion in lamprey.
    Vinay L; Barthe JY; Grillner S
    J Neurophysiol; 1996 Aug; 76(2):1224-35. PubMed ID: 8871232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory synaptic input to edge cells during fictive locomotion.
    Alford S; Williams TL
    Brain Res; 1987 Apr; 409(1):139-42. PubMed ID: 3580862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord.
    Buchanan JT
    J Neurophysiol; 1999 May; 81(5):2037-45. PubMed ID: 10322045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.