These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33454726)

  • 1. Total Least-Squares Determination of Body Segment Attitude.
    Challis JH
    J Biomech Eng; 2021 May; 143(5):. PubMed ID: 33454726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A procedure for determining rigid body transformation parameters.
    Challis JH
    J Biomech; 1995 Jun; 28(6):733-7. PubMed ID: 7601872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An examination of procedures for determining body segment attitude and position from noisy biomechanical data.
    Challis JH
    Med Eng Phys; 1995 Mar; 17(2):83-90. PubMed ID: 7735647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints.
    Klous M; Klous S
    J Biomech Eng; 2010 Jul; 132(7):074501. PubMed ID: 20590294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short Communication: Determining the average attitude of a rigid body.
    Challis JH
    J Biomech; 2020 Jan; 98():109492. PubMed ID: 31733819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A solidification procedure to facilitate kinematic analyses based on video system data.
    Chèze L; Fregly BJ; Dimnet J
    J Biomech; 1995 Jul; 28(7):879-84. PubMed ID: 7657687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marker Set Configuration and Rigid Body Attitude Determination.
    Challis JH
    J Biomech Eng; 2023 Dec; 145(12):. PubMed ID: 37792499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining rigid body transformation parameters from ill-conditioned spatial marker co-ordinates.
    Carman AB; Milburn PD
    J Biomech; 2006; 39(10):1778-86. PubMed ID: 16098982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general framework of noise suppression in material decomposition for dual-energy CT.
    Petrongolo M; Dong X; Zhu L
    Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the movements of the skeleton using well-configured markers.
    Söderkvist I; Wedin PA
    J Biomech; 1993 Dec; 26(12):1473-7. PubMed ID: 8308052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.
    Wang X; Li Y; Wei H; Chen X
    Appl Spectrosc; 2017 Jun; 71(6):1231-1241. PubMed ID: 27798384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nonlinearities and uncorrelated or correlated errors in realistic simulated data on the prediction abilities of augmented classical least squares and partial least squares.
    Melgaard DK; Haaland DM
    Appl Spectrosc; 2004 Sep; 58(9):1065-73. PubMed ID: 15479523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using an extended kalman filter for rigid body pose estimation.
    Halvorsen K; Söderström T; Stokes V; Lanshammar H
    J Biomech Eng; 2005 Jun; 127(3):475-83. PubMed ID: 16060354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static Attitude Determination Using Convolutional Neural Networks.
    Dos Santos GH; Seman LO; Bezerra EA; Leithardt VRQ; Mendes AS; Stefenon SF
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image Reconstruction Algorithm Based on Total Least Squares Target Correction for ECT.
    Wang L; Lv H; Chen D; Yang H; Li M
    Comput Intell Neurosci; 2021; 2021():3766877. PubMed ID: 34531908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian inverse kinematics vs. least-squares inverse kinematics in estimates of planar postures and rotations in the absence of soft tissue artifact.
    Pataky TC; Vanrenterghem J; Robinson MA
    J Biomech; 2019 Jan; 82():324-329. PubMed ID: 30471792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian vs. least-squares inverse kinematics: Simulation experiments with models of 3D rigid body motion and 2D models including soft-tissue artefacts.
    Serrien B; Pataky T; Baeyens JP; Cattrysse E
    J Biomech; 2020 Aug; 109():109902. PubMed ID: 32807321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulation study to investigate an extension to the point cluster technique.
    Karmarkar V; Vitali RV
    Sci Rep; 2023 Nov; 13(1):19941. PubMed ID: 37968498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Purely Algebraic Justification of the Kabsch-Umeyama Algorithm.
    Lawrence J; Bernal J; Witzgall C
    J Res Natl Inst Stand Technol; 2019; 124():1-6. PubMed ID: 34877177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.