These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 33454736)

  • 1. Identification of haploinsufficient genes from epigenomic data using deep forest.
    Yang Y; Li S; Wang Y; Ma Z; Wong KC; Li X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33454736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIPred: an integrative approach to predicting haploinsufficient genes.
    Shihab HA; Rogers MF; Campbell C; Gaunt TR
    Bioinformatics; 2017 Jun; 33(12):1751-1757. PubMed ID: 28137713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct epigenomic patterns are associated with haploinsufficiency and predict risk genes of developmental disorders.
    Han X; Chen S; Flynn E; Wu S; Wintner D; Shen Y
    Nat Commun; 2018 May; 9(1):2138. PubMed ID: 29849042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU.
    Fang CH; Theera-Ampornpunt N; Roth MA; Grama A; Chaterji S
    BMC Bioinformatics; 2019 Oct; 20(1):488. PubMed ID: 31590652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of human haploinsufficient genes and their genomic proximity to segmental duplications.
    Dang VT; Kassahn KS; Marcos AE; Ragan MA
    Eur J Hum Genet; 2008 Nov; 16(11):1350-7. PubMed ID: 18523451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iCircRBP-DHN: identification of circRNA-RBP interaction sites using deep hierarchical network.
    Yang Y; Hou Z; Ma Z; Li X; Wong KC
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33126261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The haploinsufficient tumor suppressor, CUX1, acts as an analog transcriptional regulator that controls target genes through distal enhancers that loop to target promoters.
    Arthur RK; An N; Khan S; McNerney ME
    Nucleic Acids Res; 2017 Jun; 45(11):6350-6361. PubMed ID: 28369554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ClassifyCNV: a tool for clinical annotation of copy-number variants.
    Gurbich TA; Ilinsky VV
    Sci Rep; 2020 Nov; 10(1):20375. PubMed ID: 33230148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Linear Regression and Deep Learning Approach for Detecting Reliable Genetic Alterations in Cancer Using DNA Methylation and Gene Expression Data.
    Mallik S; Seth S; Bhadra T; Zhao Z
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32806782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep multiple-instance learning accurately predicts gene haploinsufficiency and deletion pathogenicity.
    Liu Z; Huang YF
    bioRxiv; 2023 Oct; ():. PubMed ID: 37693607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectacle: fast chromatin state annotation using spectral learning.
    Song J; Chen KC
    Genome Biol; 2015 Feb; 16(1):33. PubMed ID: 25786205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why haploinsufficiency persists.
    Morrill SA; Amon A
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11866-11871. PubMed ID: 31142641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CNOT2 haploinsufficiency causes a neurodevelopmental disorder with characteristic facial features.
    Uehara T; Tsuchihashi T; Yamada M; Suzuki H; Takenouchi T; Kosaki K
    Am J Med Genet A; 2019 Dec; 179(12):2506-2509. PubMed ID: 31512373
    [No Abstract]   [Full Text] [Related]  

  • 14. Development and application of an integrated allele-specific pipeline for methylomic and epigenomic analysis (MEA).
    Richard Albert J; Koike T; Younesy H; Thompson R; Bogutz AB; Karimi MM; Lorincz MC
    BMC Genomics; 2018 Jun; 19(1):463. PubMed ID: 29907088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BRCA1 mutations attenuate super-enhancer function and chromatin looping in haploinsufficient human breast epithelial cells.
    Zhang X; Wang Y; Chiang HC; Hsieh YP; Lu C; Park BH; Jatoi I; Jin VX; Hu Y; Li R
    Breast Cancer Res; 2019 Apr; 21(1):51. PubMed ID: 30995943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterising and predicting haploinsufficiency in the human genome.
    Huang N; Lee I; Marcotte EM; Hurles ME
    PLoS Genet; 2010 Oct; 6(10):e1001154. PubMed ID: 20976243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenomic elements enriched in the promoters of autoimmunity susceptibility genes.
    Dozmorov MG; Wren JD; Alarcón-Riquelme ME
    Epigenetics; 2014 Feb; 9(2):276-85. PubMed ID: 24213554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features.
    Chu Y; Kaushik AC; Wang X; Wang W; Zhang Y; Shan X; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Jan; 22(1):451-462. PubMed ID: 31885041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Clustering of de Novo Missense Mutations Identifies Candidate Neurodevelopmental Disorder-Associated Genes.
    Lelieveld SH; Wiel L; Venselaar H; Pfundt R; Vriend G; Veltman JA; Brunner HG; Vissers LELM; Gilissen C
    Am J Hum Genet; 2017 Sep; 101(3):478-484. PubMed ID: 28867141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.