These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 33454752)

  • 1. Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles.
    Tao H; Li H; Xu K; Hong H; Jiang S; Du G; Wang J; Sun Y; Huang X; Ding Y; Li F; Zheng X; Chen H; Bo X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33454752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles.
    Chen Y; Wang Y; Xuan Z; Chen M; Zhang MQ
    Nucleic Acids Res; 2016 Jun; 44(11):e106. PubMed ID: 27060148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparative Study of Supervised Machine Learning Algorithms for the Prediction of Long-Range Chromatin Interactions.
    Vanhaeren T; Divina F; García-Torres M; Gómez-Vela F; Vanhoof W; Martínez-García PM
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32847102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for comparative ChIA-PET and Hi-C data analysis.
    Capurso D; Tang Z; Ruan Y
    Methods; 2020 Jan; 170():69-74. PubMed ID: 31629084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepChIA-PET: Accurately predicting ChIA-PET from Hi-C and ChIP-seq with deep dilated networks.
    Liu T; Wang Z
    PLoS Comput Biol; 2023 Jul; 19(7):e1011307. PubMed ID: 37440599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A supervised learning framework for chromatin loop detection in genome-wide contact maps.
    Salameh TJ; Wang X; Song F; Zhang B; Wright SM; Khunsriraksakul C; Ruan Y; Yue F
    Nat Commun; 2020 Jul; 11(1):3428. PubMed ID: 32647330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy-based model of CTCF-mediated chromatin looping in the human genome.
    Dawson WK; Lazniewski M; Plewczynski D
    Methods; 2020 Oct; 181-182():35-51. PubMed ID: 32645447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin loop anchors predict transcript and exon usage.
    Zhang Y; Cai Y; Roca X; Kwoh CK; Fullwood MJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34263910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two main stream methods analysis and visual 3D genome architecture.
    Fu S; Zhang L; Lv J; Zhu B; Wang W; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():43-53. PubMed ID: 30059749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progresses in the plant 3D chromatin architecture.
    Dong QL; Wang JB; Li XC; Gong L
    Yi Chuan; 2020 Jan; 42(1):73-86. PubMed ID: 31956098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) sequencing technology and application.
    Li G; Cai L; Chang H; Hong P; Zhou Q; Kulakova EV; Kolchanov NA; Ruan Y
    BMC Genomics; 2014; 15 Suppl 12(Suppl 12):S11. PubMed ID: 25563301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing.
    Li G; Fullwood MJ; Xu H; Mulawadi FH; Velkov S; Vega V; Ariyaratne PN; Mohamed YB; Ooi HS; Tennakoon C; Wei CL; Ruan Y; Sung WK
    Genome Biol; 2010; 11(2):R22. PubMed ID: 20181287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning polymer models of three-dimensional chromatin organization in human lymphoblastoid cells.
    Al Bkhetan Z; Kadlof M; Kraft A; Plewczynski D
    Methods; 2019 Aug; 166():83-90. PubMed ID: 30853548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-read ChIA-PET for base-pair-resolution mapping of haplotype-specific chromatin interactions.
    Li X; Luo OJ; Wang P; Zheng M; Wang D; Piecuch E; Zhu JJ; Tian SZ; Tang Z; Li G; Ruan Y
    Nat Protoc; 2017 May; 12(5):899-915. PubMed ID: 28358394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex chromatin interactions with single-molecule precision.
    Zheng M; Tian SZ; Capurso D; Kim M; Maurya R; Lee B; Piecuch E; Gong L; Zhu JJ; Li Z; Wong CH; Ngan CY; Wang P; Ruan X; Wei CL; Ruan Y
    Nature; 2019 Feb; 566(7745):558-562. PubMed ID: 30778195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring chromatin hierarchical organization via Markov State Modelling.
    Tan ZW; Guarnera E; Berezovsky IN
    PLoS Comput Biol; 2018 Dec; 14(12):e1006686. PubMed ID: 30596637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis.
    Li G; Chen Y; Snyder MP; Zhang MQ
    Nucleic Acids Res; 2017 Jan; 45(1):e4. PubMed ID: 27625391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting chromatin organization using histone marks.
    Huang J; Marco E; Pinello L; Yuan GC
    Genome Biol; 2015 Aug; 16(1):162. PubMed ID: 26272203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues.
    Buisine N; Ruan X; Ruan Y; Sachs LM
    Cold Spring Harb Protoc; 2018 Aug; 2018(8):. PubMed ID: 29895565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin Immunoprecipitation for Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues.
    Buisine N; Ruan X; Ruan Y; Sachs LM
    Cold Spring Harb Protoc; 2018 Aug; 2018(8):. PubMed ID: 29895563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.