BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33454822)

  • 41. Mechanistic insights into epigenetic modulation of ethanol consumption.
    Ponomarev I; Stelly CE; Morikawa H; Blednov YA; Mayfield RD; Harris RA
    Alcohol; 2017 May; 60():95-101. PubMed ID: 28433417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring the molecular mechanisms underlie the endoplasmic reticulum stress-mediated methylmercury-induced neuronal developmental damage.
    Pan J; Li X; Liu H; Wang C; Xu S; Xu B; Deng Y; Yang T; Liu W
    Ecotoxicol Environ Saf; 2022 Oct; 245():114099. PubMed ID: 36152427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression pattern of DNA-methyltransferases and its health implication (short review).
    Kvaratskhelia E; Tkemaladze T; Abzianidze E
    Georgian Med News; 2014 Mar; (228):76-81. PubMed ID: 24743128
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The prenatal toxic effect of methylmercury on the development of the appendicular skeleton of rat fetuses and the protective role of vitamin E.
    Abd El-Aziz GS; El-Fark MM; Saleh HA
    Anat Rec (Hoboken); 2012 Jun; 295(6):939-49. PubMed ID: 22549941
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quercetin modifies 5'CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells.
    Kedhari Sundaram M; Hussain A; Haque S; Raina R; Afroze N
    J Cell Biochem; 2019 Oct; 120(10):18357-18369. PubMed ID: 31172592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combined inhibition of EZH2 and histone deacetylases as a potential epigenetic therapy for non-small-cell lung cancer cells.
    Takashina T; Kinoshita I; Kikuchi J; Shimizu Y; Sakakibara-Konishi J; Oizumi S; Nishimura M; Dosaka-Akita H
    Cancer Sci; 2016 Jul; 107(7):955-62. PubMed ID: 27116120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Histone deacetylase inhibitors exert anti-tumor effects on human adherent and stem-like glioma cells.
    Was H; Krol SK; Rotili D; Mai A; Wojtas B; Kaminska B; Maleszewska M
    Clin Epigenetics; 2019 Jan; 11(1):11. PubMed ID: 30654849
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transgenerational inheritance of methylmercury and vitamin A-induced toxicological effects in a Wistar rats environmental-based model.
    Carazza-Kessler FG; Campos MS; Bittencourt RR; Rosa-Silva HTD; Brum PO; Silveira AK; Teixeira AA; Ribeiro CT; Peixoto DO; Santos L; Andrade G; Panzenhagen AC; Scheibel IM; Gelain DP; Fonseca Moreira JC
    Chemosphere; 2024 Mar; 351():141239. PubMed ID: 38272134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents.
    Godino A; Jayanthi S; Cadet JL
    Epigenetics; 2015; 10(7):574-80. PubMed ID: 26023847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications.
    Sigalotti L; Fratta E; Coral S; Cortini E; Covre A; Nicolay HJ; Anzalone L; Pezzani L; Di Giacomo AM; Fonsatti E; Colizzi F; Altomonte M; Calabrò L; Maio M
    J Cell Physiol; 2007 Aug; 212(2):330-44. PubMed ID: 17458893
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain.
    Stringari J; Nunes AK; Franco JL; Bohrer D; Garcia SC; Dafre AL; Milatovic D; Souza DO; Rocha JB; Aschner M; Farina M
    Toxicol Appl Pharmacol; 2008 Feb; 227(1):147-54. PubMed ID: 18023834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effects of methylmercury on motor activity are sex- and age-dependent, and modulated by genetic deletion of adenosine receptors and caffeine administration.
    Björklund O; Kahlström J; Salmi P; Ogren SO; Vahter M; Chen JF; Fredholm BB; Daré E
    Toxicology; 2007 Nov; 241(3):119-33. PubMed ID: 17920182
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tescalcin is a potential target of class I histone deacetylase inhibitors in neurons.
    Takamatsu G; Katagiri C; Tomoyuki T; Shimizu-Okabe C; Nakamura W; Nakamura-Higa M; Hayakawa T; Wakabayashi S; Kondo T; Takayama C; Matsushita M
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1327-1333. PubMed ID: 27939885
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Change in gene expression profiles of secreted frizzled-related proteins (SFRPs) by sodium butyrate in gastric cancers: induction of promoter demethylation and histone modification causing inhibition of Wnt signaling.
    Shin H; Kim JH; Lee YS; Lee YC
    Int J Oncol; 2012 May; 40(5):1533-42. PubMed ID: 22246241
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats.
    Desaulniers D; Xiao GH; Lian H; Feng YL; Zhu J; Nakai J; Bowers WJ
    Int J Toxicol; 2009; 28(4):294-307. PubMed ID: 19636072
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition.
    Findeisen HM; Gizard F; Zhao Y; Qing H; Heywood EB; Jones KL; Cohn D; Bruemmer D
    Arterioscler Thromb Vasc Biol; 2011 Apr; 31(4):851-60. PubMed ID: 21233448
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discovery of indole-piperazine derivatives as selective histone deacetylase 6 inhibitors with neurite outgrowth-promoting activities and neuroprotective activities.
    Liang T; Xie Z; Dang B; Wang J; Zhang T; Luan X; Lu T; Cao C; Chen X
    Bioorg Med Chem Lett; 2023 Feb; 81():129148. PubMed ID: 36690041
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeting epigenetic DNA and histone modifications to treat kidney disease.
    Fontecha-Barriuso M; Martin-Sanchez D; Ruiz-Andres O; Poveda J; Sanchez-Niño MD; Valiño-Rivas L; Ruiz-Ortega M; Ortiz A; Sanz AB
    Nephrol Dial Transplant; 2018 Nov; 33(11):1875-1886. PubMed ID: 29534238
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accumulation of methylmercury or polychlorinated biphenyls in in vitro models of rat neuronal tissue.
    Meacham CA; Freudenrich TM; Anderson WL; Sui L; Lyons-Darden T; Barone S; Gilbert ME; Mundy WR; Shafer TJ
    Toxicol Appl Pharmacol; 2005 Jun; 205(2):177-87. PubMed ID: 15893545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neurobehavioral and oxidative stress alterations following methylmercury and retinyl palmitate co-administration in pregnant and lactating rats and their offspring.
    Espitia-Pérez P; Albino SM; Espitia-Pérez L; Brango H; da Rosa H; Kleber Silveira A; Moraes DP; Cerveira C; Mingori M; Tiefensee Ribeiro C; Gelain DP; Schnorr CE; Fonseca Moreira JC
    Neurotoxicology; 2018 Dec; 69():164-180. PubMed ID: 30316701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.