These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 33454864)

  • 1. Heavy metal adsorption capacity of powdered Chlorella vulgaris biosorbent: effect of chemical modification and growth media.
    Joo G; Lee W; Choi Y
    Environ Sci Pollut Res Int; 2021 May; 28(20):25390-25399. PubMed ID: 33454864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on algal biosorbents for heavy metal remediation with different adsorption isotherm models.
    Kumar A; Sidharth S; Kandasubramanian B
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39474-39493. PubMed ID: 36780087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioremoval capacity of Co
    Abdel-Raouf N; Sholkamy EN; Bukhari N; Al-Enazi NM; Alsamhary KI; Al-Khiat SHA; Ibraheem IBM
    Environ Res; 2022 Mar; 204(Pt B):111630. PubMed ID: 34224707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and desorption of potentially toxic metals on modified biosorbents through new green grafting process.
    Tran HN; Chao HP
    Environ Sci Pollut Res Int; 2018 May; 25(13):12808-12820. PubMed ID: 29476368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of solvents on metal ion adsorption by the alga Chlorella vulgaris.
    Al-Qunaibit M; Khalil M; Al-Wassil A
    Chemosphere; 2005 Jul; 60(3):412-8. PubMed ID: 15924961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A renewable biosorbent material for green decontamination of heavy metal pollution from aquatic medium: a case study on manganese removal.
    Deniz F; Tezel Ersanli E
    Int J Phytoremediation; 2021; 23(3):231-237. PubMed ID: 32820944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioremediation of potentially toxic metal and reactive dye-contaminated water by pristine and modified Chlorella vulgaris.
    Radwan EK; Abdel-Aty AM; El-Wakeel ST; Abdel Ghafar HH
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):21777-21789. PubMed ID: 32281065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems.
    Rodrigues MS; Ferreira LS; de Carvalho JC; Lodi A; Finocchio E; Converti A
    J Hazard Mater; 2012 May; 217-218():246-55. PubMed ID: 22480702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads.
    Ahmad A; Bhat AH; Buang A
    Environ Technol; 2019 Jun; 40(14):1793-1809. PubMed ID: 29345546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic removal of cadmium and organic matter by a microalgae-endophyte symbiotic system (MESS): An approach to improve the application potential of plant-derived biosorbents.
    Li M; Xiao X; Wang S; Zhang X; Li J; Pavlostathis SG; Luo X; Luo S; Zeng G
    Environ Pollut; 2020 Jun; 261():114177. PubMed ID: 32088437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of heavy metal removal using microorganisms as biosorbent.
    Javanbakht V; Alavi SA; Zilouei H
    Water Sci Technol; 2014; 69(9):1775-87. PubMed ID: 24804650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals.
    Zhou Y; Zhang Z; Zhang J; Xia S
    J Environ Sci (China); 2016 Jul; 45():248-56. PubMed ID: 27372140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydopamine-Based Surface Modification of Chlorella Microspheres for Multiple Environmental Applications.
    Pan S; Huang G; Ding H; Wang K; Wang H
    J Nanosci Nanotechnol; 2021 May; 21(5):3065-3071. PubMed ID: 33653481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal.
    Gümüş D
    Int J Phytoremediation; 2019; 21(6):556-563. PubMed ID: 30729808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism.
    Chen M; Wang X; Zhang H
    J Environ Manage; 2021 Jun; 288():112388. PubMed ID: 33774561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of inorganic mercury from aqueous solutions onto dry biomass of Chlorella vulgaris: kinetic and isotherm study.
    Solisio C; Al Arni S; Converti A
    Environ Technol; 2019 Feb; 40(5):664-672. PubMed ID: 29098939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach to counter sediment toxicity by immobilization of heavy metals using waste fish scale derived biosorbent.
    Pal D; Maiti SK
    Ecotoxicol Environ Saf; 2020 Jan; 187():109833. PubMed ID: 31654862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of Chlorella Vulgaris Exposed to Heavy Metal Mixtures: Linking Measured Endpoints and Mechanisms.
    Expósito N; Carafa R; Kumar V; Sierra J; Schuhmacher M; Papiol GG
    Int J Environ Res Public Health; 2021 Jan; 18(3):. PubMed ID: 33503904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents.
    Ayangbenro AS; Babalola OO
    Int J Environ Res Public Health; 2017 Jan; 14(1):. PubMed ID: 28106848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents.
    Oh JJ; Kim JY; Kim YJ; Kim S; Kim GH
    Chemosphere; 2021 Jun; 272():129884. PubMed ID: 33582504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.