These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 33454864)

  • 21. Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides.
    Wang J; Chen C
    Bioresour Technol; 2014 May; 160():129-41. PubMed ID: 24461334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption behavior of heavy metal ions on a polymer-immobilized amphoteric biosorbent: Surface interaction assessment.
    Zheng C; Wu Q; Hu X; Wang Y; Chen Y; Zhang S; Zheng H
    J Hazard Mater; 2021 Feb; 403():123801. PubMed ID: 33264904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: influence of pH, temperature, culture age, and cations.
    Mehta SK; Singh A; Gaur JP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Mar; 37(3):399-414. PubMed ID: 11929076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption behaviours and mechanisms of heavy metal ions' impact on municipal waste composts with different degree of maturity.
    Liu L; Guo X; Zhang C; Luo C; Xiao C; Li R
    Environ Technol; 2019 Sep; 40(22):2962-2976. PubMed ID: 29584584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies.
    Akhtar N; Iqbal J; Iqbal M
    J Hazard Mater; 2004 Apr; 108(1-2):85-94. PubMed ID: 15081166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of Aqueous Cu(II) Biosorption onto
    Medhi H; Chowdhury PR; Baruah PD; Bhattacharyya KG
    ACS Omega; 2020 Jun; 5(23):13489-13502. PubMed ID: 32566814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous adsorption of lanthanum and yttrium from aqueous solution by durian rind biosorbent.
    Kusrini E; Usman A; Sani FA; Wilson LD; Abdullah MAA
    Environ Monit Assess; 2019 Jul; 191(8):488. PubMed ID: 31292792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics.
    Schiewer S; Patil SB
    Bioresour Technol; 2008 Apr; 99(6):1896-903. PubMed ID: 17540559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media.
    Rugnini L; Costa G; Congestri R; Bruno L
    Sci Total Environ; 2017 Dec; 601-602():959-967. PubMed ID: 28582741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study.
    Abdolali A; Ngo HH; Guo W; Lu S; Chen SS; Nguyen NC; Zhang X; Wang J; Wu Y
    Sci Total Environ; 2016 Jan; 542(Pt A):603-11. PubMed ID: 26544889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution.
    Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O
    Water Res; 2006 Jul; 40(12):2295-302. PubMed ID: 16766011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process.
    Chojnacka K; Chojnacki A; Górecka H
    Chemosphere; 2005 Mar; 59(1):75-84. PubMed ID: 15698647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water.
    Mwandira W; Nakashima K; Togo Y; Sato T; Kawasaki S
    Chemosphere; 2020 May; 246():125733. PubMed ID: 31901659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Is phycovolatilization of heavy metals a probable (or possible) physiological phenomenon? An in situ pilot-scale study at a leather-processing chemical industry.
    Rao PH; Kumar RR; Raghavan BG; Subramanian VV; Sivasubramanian V
    Water Environ Res; 2011 Apr; 83(4):291-7. PubMed ID: 21553585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscale zero-valent iron functionalized Posidonia oceanica marine biomass for heavy metal removal from water.
    Boubakri S; Djebbi MA; Bouaziz Z; Namour P; Ben Haj Amara A; Ghorbel-Abid I; Kalfat R
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27879-27896. PubMed ID: 28988320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorus availability changes chromium toxicity in the freshwater alga Chlorella vulgaris.
    Qian H; Sun Z; Sun L; Jiang Y; Wei Y; Xie J; Fu Z
    Chemosphere; 2013 Oct; 93(6):885-91. PubMed ID: 23786815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies.
    Abdolali A; Ngo HH; Guo W; Zhou JL; Du B; Wei Q; Wang XC; Nguyen PD
    Bioresour Technol; 2015 Oct; 193():477-87. PubMed ID: 26162526
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ZÁrate A; Florez J; Angulo E; Varela-Prieto L; Infante C; Barrios F; Barraza B; Gallardo DI; Valdés J
    J Microbiol Biotechnol; 2017 Jun; 27(6):1138-1149. PubMed ID: 28301920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing cell preparation technique to enhance adsorption capacity of pseudomonas putida 5-x to heavy metal ions.
    Wang L; Zhou Q; Zheng GH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(11):2041-55. PubMed ID: 16287640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.