BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33454988)

  • 1. Prey type constrains growth and photosynthetic capacity of the kleptoplastidic ciliate Mesodinium chamaeleon (Ciliophora).
    Moeller HV; Hsu V; Lepori-Bui M; Mesrop LY; Chinn C; Johnson MD
    J Phycol; 2021 Jun; 57(3):916-930. PubMed ID: 33454988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cascading effects of prey identity on gene expression in a kleptoplastidic ciliate.
    Paight C; Johnson MD; Lasek-Nesselquist E; Moeller HV
    J Eukaryot Microbiol; 2023 Jan; 70(1):e12940. PubMed ID: 35975609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential Plastid Retention by the Acquired Phototroph Mesodinium chamaeleon.
    Moeller HV; Johnson MD
    J Eukaryot Microbiol; 2018 Mar; 65(2):148-158. PubMed ID: 28710891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and Chloroplast Replacement of the Benthic Mixotrophic Ciliate Mesodinium coatsi.
    Kim M; Kang M; Park MG
    J Eukaryot Microbiol; 2019 Jul; 66(4):625-636. PubMed ID: 30561091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal succession of ciliate Mesodinium spp. with red, green, or mixed plastids and their association with cryptophyte prey.
    Nishitani G; Yamaguchi M
    Sci Rep; 2018 Nov; 8(1):17189. PubMed ID: 30464297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptophyte gene regulation in the kleptoplastidic, karyokleptic ciliate Mesodinium rubrum.
    Kim GH; Han JH; Kim B; Han JW; Nam SW; Shin W; Park JW; Yih W
    Harmful Algae; 2016 Feb; 52():23-33. PubMed ID: 28073468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acquired phototrophy in ciliates: a review of cellular interactions and structural adaptations.
    Johnson MD
    J Eukaryot Microbiol; 2011; 58(3):185-95. PubMed ID: 21518077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling the hidden genetic diversity and chloroplast type of marine benthic ciliate Mesodinium species.
    Kim M; Park MG
    Sci Rep; 2019 Oct; 9(1):14081. PubMed ID: 31575940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of starvation on plastid number and photosynthetic performance in the kleptoplastidic dinoflagellate Amylax triacantha.
    Kim M; Kim KY; Nam SW; Shin W; Yih W; Park MG
    J Eukaryot Microbiol; 2014; 61(4):354-63. PubMed ID: 24734883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dinoflagellate Amylax triacantha with plastids of the cryptophyte origin: phylogeny, feeding mechanism, and growth and grazing responses.
    Park MG; Kim M; Kang M
    J Eukaryot Microbiol; 2013; 60(4):363-76. PubMed ID: 23631398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra.
    Johnson MD; Oldach D; Delwiche CF; Stoecker DK
    Nature; 2007 Jan; 445(7126):426-8. PubMed ID: 17251979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the genus Mesodinium I: ultrastructure and description of Mesodinium chamaeleon n. sp., a benthic marine species with green or red chloroplasts.
    Moestrup O; Garcia-Cuetos L; Hansen PJ; Fenchel T
    J Eukaryot Microbiol; 2012; 59(1):20-39. PubMed ID: 22221919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dinophysis Ehrenberg (Dinophyceae) in Southern Chile harbours red cryptophyte plastids from Rhodomonas/Storeatula clade.
    Díaz PA; Fernández-Pena C; Pérez-Santos I; Baldrich Á; Díaz M; Rodríguez F
    Harmful Algae; 2020 Nov; 99():101907. PubMed ID: 33218433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limits to the cellular control of sequestered cryptophyte prey in the marine ciliate Mesodinium rubrum.
    Altenburger A; Cai H; Li Q; Drumm K; Kim M; Zhu Y; Garcia-Cuetos L; Zhan X; Hansen PJ; John U; Li S; Lundholm N
    ISME J; 2021 Apr; 15(4):1056-1072. PubMed ID: 33230263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional control and metabolic integration of stolen organelles in a photosynthetic ciliate.
    Johnson MD; Moeller HV; Paight C; Kellogg RM; McIlvin MR; Saito MA; Lasek-Nesselquist E
    Curr Biol; 2023 Mar; 33(5):973-980.e5. PubMed ID: 36773606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata.
    Wisecaver JH; Hackett JD
    BMC Genomics; 2010 Jun; 11():366. PubMed ID: 20537123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary Dynamics of Cryptophyte Plastid Genomes.
    Kim JI; Moore CE; Archibald JM; Bhattacharya D; Yi G; Yoon HS; Shin W
    Genome Biol Evol; 2017 Jul; 9(7):1859-1872. PubMed ID: 28854597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PLASTID DYNAMICS DURING SURVIVAL OF DINOPHYSIS CAUDATA WITHOUT ITS CILIATE PREY(1).
    Park MG; Park JS; Kim M; Yih W
    J Phycol; 2008 Oct; 44(5):1154-63. PubMed ID: 27041712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny.
    Khan H; Parks N; Kozera C; Curtis BA; Parsons BJ; Bowman S; Archibald JM
    Mol Biol Evol; 2007 Aug; 24(8):1832-42. PubMed ID: 17522086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What Happened before Losses of Photosynthesis in Cryptophyte Algae?
    Suzuki S; Matsuzaki R; Yamaguchi H; Kawachi M
    Mol Biol Evol; 2022 Feb; 39(2):. PubMed ID: 35079797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.