These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33455193)

  • 1. Injectable Electrical Conductive and Phosphate Releasing Gel with Two-Dimensional Black Phosphorus and Carbon Nanotubes for Bone Tissue Engineering.
    Liu X; George MN; Li L; Gamble D; Miller Ii AL; Gaihre B; Waletzki BE; Lu L
    ACS Biomater Sci Eng; 2020 Aug; 6(8):4653-4665. PubMed ID: 33455193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation.
    Liu X; Miller AL; Park S; Waletzki BE; Zhou Z; Terzic A; Lu L
    ACS Appl Mater Interfaces; 2017 May; 9(17):14677-14690. PubMed ID: 28406608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent osteogenesis of black phosphorus in nanocomposite hydrogel scaffolds.
    Xu H; Liu X; Park S; Terzic A; Lu L
    J Biomed Mater Res A; 2022 Aug; 110(8):1488-1498. PubMed ID: 35319809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Black phosphorus incorporation modulates nanocomposite hydrogel properties and subsequent MC3T3 cell attachment, proliferation, and differentiation.
    Xu H; Liu X; George MN; Miller AL; Park S; Xu H; Terzic A; Lu L
    J Biomed Mater Res A; 2021 Sep; 109(9):1633-1645. PubMed ID: 33650768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent crosslinking of graphene oxide and carbon nanotube into hydrogels enhances nerve cell responses.
    Liu X; Miller Ii AL; Park S; Waletzki BE; Terzic A; Yaszemski MJ; Lu L
    J Mater Chem B; 2016 Nov; 4(43):6930-6941. PubMed ID: 32263560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesenchymal stem cell spheroids incorporated with collagen and black phosphorus promote osteogenesis of biodegradable hydrogels.
    Li L; Liu X; Gaihre B; Li Y; Lu L
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111812. PubMed ID: 33579456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds.
    Liu X; Miller AL; Park S; George MN; Waletzki BE; Xu H; Terzic A; Lu L
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23558-23572. PubMed ID: 31199116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate functionalization and enzymatic calcium mineralization synergistically enhance oligo[poly(ethylene glycol) fumarate] hydrogel osteoconductivity for bone tissue engineering.
    George MN; Liu X; Miller AL; Xu H; Lu L
    J Biomed Mater Res A; 2020 Mar; 108(3):515-527. PubMed ID: 31702863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro.
    Temenoff JS; Park H; Jabbari E; Conway DE; Sheffield TL; Ambrose CG; Mikos AG
    Biomacromolecules; 2004; 5(1):5-10. PubMed ID: 14715001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composites made of polyorganophosphazene and carbon nanotube up-regulating osteogenic activity of BMSCs under electrical stimulation.
    Huang Y; Jing W; Li Y; Cai Q; Yang X
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111785. PubMed ID: 33932894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate Functional Groups Improve Oligo[(Polyethylene Glycol) Fumarate] Osteoconduction and BMP-2 Osteoinductive Efficacy.
    Olthof MGL; Tryfonidou MA; Liu X; Pouran B; Meij BP; Dhert WJA; Yaszemski MJ; Lu L; Alblas J; Kempen DHR
    Tissue Eng Part A; 2018 May; 24(9-10):819-829. PubMed ID: 29065776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectable thermosensitive black phosphorus nanosheet- and doxorubicin-loaded hydrogel for synergistic bone tumor photothermal-chemotherapy and osteogenesis enhancement.
    Li S; Qing Y; Lou Y; Li R; Wang H; Wang X; Ying B; Tang X; Qin Y
    Int J Biol Macromol; 2023 Jun; 239():124209. PubMed ID: 36972826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Application of Black Phosphorus Nanomaterials in Bone Tissue Engineering.
    Jing X; Xiong Z; Lin Z; Sun T
    Pharmaceutics; 2022 Nov; 14(12):. PubMed ID: 36559127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels.
    Shin H; Quinten Ruhé P; Mikos AG; Jansen JA
    Biomaterials; 2003 Aug; 24(19):3201-11. PubMed ID: 12763447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization.
    Liu X; George MN; Park S; Miller Ii AL; Gaihre B; Li L; Waletzki BE; Terzic A; Yaszemski MJ; Lu L
    Acta Biomater; 2020 Jul; 111():129-140. PubMed ID: 32428680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Black Phosphorus Hydrogel Scaffolds Enhance Bone Regeneration via a Sustained Supply of Calcium-Free Phosphorus.
    Huang K; Wu J; Gu Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2908-2916. PubMed ID: 30596421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mussel-Inspired Bisphosphonated Injectable Nanocomposite Hydrogels with Adhesive, Self-Healing, and Osteogenic Properties for Bone Regeneration.
    Wang B; Liu J; Niu D; Wu N; Yun W; Wang W; Zhang K; Li G; Yan S; Xu G; Yin J
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):32673-32689. PubMed ID: 34227792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Three-in-One Strategy: Injectable Biomimetic Porous Hydrogels for Accelerating Bone Regeneration via Shape-Adaptable Scaffolds, Controllable Magnesium Ion Release, and Enhanced Osteogenic Differentiation.
    Zhou H; Yu K; Jiang H; Deng R; Chu L; Cao Y; Zheng Y; Lu W; Deng Z; Liang B
    Biomacromolecules; 2021 Nov; 22(11):4552-4568. PubMed ID: 34590825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering.
    Kazemi-Aghdam F; Jahed V; Dehghan-Niri M; Ganji F; Vasheghani-Farahani E
    Carbohydr Polym; 2021 Oct; 269():118311. PubMed ID: 34294325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.