BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33455257)

  • 1. Anomalous in Vitro and in Vivo Degradation of Magnesium Phosphate Bioceramics: Role of Zinc Addition.
    Sarkar K; Kumar V; Devi KB; Ghosh D; Nandi SK; Roy M
    ACS Biomater Sci Eng; 2019 Oct; 5(10):5097-5106. PubMed ID: 33455257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Biocompatibility of Zinc-Doped Magnesium Silicate Bio-Ceramics.
    Devi KB; Tripathy B; Kumta PN; Nandi SK; Roy M
    ACS Biomater Sci Eng; 2018 Jun; 4(6):2126-2133. PubMed ID: 33435036
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Devi KB; Tripathy B; Roy A; Lee B; Kumta PN; Nandi SK; Roy M
    ACS Biomater Sci Eng; 2019 Feb; 5(2):530-543. PubMed ID: 33405817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the multiscale porosity of decellularized platelet-rich fibrin-loaded zinc-doped magnesium phosphate scaffolds in bone regeneration.
    Rath P; Mandal S; Das P; Sahoo SN; Mandal S; Ghosh D; Nandi SK; Roy M
    J Mater Chem B; 2024 Jun; 12(24):5869-5883. PubMed ID: 38775079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnesium Phosphate Bioceramics for Bone Tissue Engineering.
    Bavya Devi K; Lalzawmliana V; Saidivya M; Kumar V; Roy M; Kumar Nandi S
    Chem Rec; 2022 Nov; 22(11):e202200136. PubMed ID: 35866502
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Dutta S; Khan R; Prakash NS; Gupta S; Ghosh D; Nandi SK; Roy M
    ACS Biomater Sci Eng; 2022 Oct; 8(10):4236-4248. PubMed ID: 36153956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo assessment of decellularized platelet-rich fibrin-loaded strontium doped porous magnesium phosphate scaffolds in bone regeneration.
    Tarif CM; Mandal S; Chakraborty B; Sarkar K; Mukherjee P; Roy M; Nandi SK
    J Mech Behav Biomed Mater; 2023 Feb; 138():105587. PubMed ID: 36446181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallic ion doped tri-calcium phosphate ceramics: Effect of dynamic loading on in vivo bone regeneration.
    Samanta SK; Devi KB; Das P; Mukherjee P; Chanda A; Roy M; Nandi SK
    J Mech Behav Biomed Mater; 2019 Aug; 96():227-235. PubMed ID: 31059898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo.
    Kim JA; Yun HS; Choi YA; Kim JE; Choi SY; Kwon TG; Kim YK; Kwon TY; Bae MA; Kim NJ; Bae YC; Shin HI; Park EK
    Biomaterials; 2018 Mar; 157():51-61. PubMed ID: 29245051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone-cell material interactions.
    Bandyopadhyay A; Petersen J; Fielding G; Banerjee S; Bose S
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2203-12. PubMed ID: 22997062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora.
    Kawamura H; Ito A; Miyakawa S; Layrolle P; Ojima K; Ichinose N; Tateishi T
    J Biomed Mater Res; 2000 May; 50(2):184-90. PubMed ID: 10679683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on an Mg-Zn alloy as a degradable biomaterial.
    Zhang S; Zhang X; Zhao C; Li J; Song Y; Xie C; Tao H; Zhang Y; He Y; Jiang Y; Bian Y
    Acta Biomater; 2010 Feb; 6(2):626-40. PubMed ID: 19545650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications.
    Yang H; Qu X; Lin W; Wang C; Zhu D; Dai K; Zheng Y
    Acta Biomater; 2018 Apr; 71():200-214. PubMed ID: 29530820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics.
    Ito A; Ojima K; Naito H; Ichinose N; Tateishi T
    J Biomed Mater Res; 2000 May; 50(2):178-83. PubMed ID: 10679682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics.
    Wu C; Ramaswamy Y; Chang J; Woods J; Chen Y; Zreiqat H
    J Biomed Mater Res B Appl Biomater; 2008 Nov; 87(2):346-53. PubMed ID: 18464251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.
    Yu Y; Jin G; Xue Y; Wang D; Liu X; Sun J
    Acta Biomater; 2017 Feb; 49():590-603. PubMed ID: 27915020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility.
    Ryu HS; Hong KS; Lee JK; Kim DJ; Lee JH; Chang BS; Lee DH; Lee CK; Chung SS
    Biomaterials; 2004 Feb; 25(3):393-401. PubMed ID: 14585687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structural, biological and dielectric properties of Sr, Mg and Zn doped silicate ceramics.
    Riaz M; Najam M; Arif S; Farooq S; Mahmood A
    J Mech Behav Biomed Mater; 2023 Jun; 142():105830. PubMed ID: 37040688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of extraction medium influences cytotoxicity of zinc and its alloys.
    Li P; Schille C; Schweizer E; Kimmerle-Müller E; Rupp F; Heiss A; Legner C; Klotz UE; Geis-Gerstorfer J; Scheideler L
    Acta Biomater; 2019 Oct; 98():235-245. PubMed ID: 30862550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.