These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33455330)

  • 81. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.
    Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.
    Ke D; Dernell W; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1549-59. PubMed ID: 25504889
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Bone neoformation of a novel porous resorbable Si-Ca-P-based ceramic with osteoconductive properties: physical and mechanical characterization, histological and histomorphometric study.
    De Aza PN; Mate-Sanchez de Val JE; Baudin C; Perez Albacete-Martínez C; Armijo Salto A; Calvo-Guirado JL
    Clin Oral Implants Res; 2016 Nov; 27(11):1368-1375. PubMed ID: 26775798
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Synthesis of calcium phosphate-zirconia scaffold and human endometrial adult stem cells for bone tissue engineering.
    Alizadeh A; Moztarzadeh F; Ostad SN; Azami M; Geramizadeh B; Hatam G; Bizari D; Tavangar SM; Vasei M; Ai J
    Artif Cells Nanomed Biotechnol; 2016; 44(1):66-73. PubMed ID: 24810360
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway.
    Zhang J; Liu X; Li H; Chen C; Hu B; Niu X; Li Q; Zhao B; Xie Z; Wang Y
    Stem Cell Res Ther; 2016 Sep; 7(1):136. PubMed ID: 27650895
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting.
    Miranda P; Pajares A; Saiz E; Tomsia AP; Guiberteau F
    J Biomed Mater Res A; 2008 Apr; 85(1):218-27. PubMed ID: 17688280
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study.
    Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L
    Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Reinforcing bioceramic scaffolds with in situ synthesized ε-polycaprolactone coatings.
    Martínez-Vázquez FJ; Miranda P; Guiberteau F; Pajares A
    J Biomed Mater Res A; 2013 Dec; 101(12):3551-9. PubMed ID: 23629876
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate.
    Chen Z; Mao X; Tan L; Friis T; Wu C; Crawford R; Xiao Y
    Biomaterials; 2014 Oct; 35(30):8553-65. PubMed ID: 25017094
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Model.
    Diloksumpan P; Bolaños RV; Cokelaere S; Pouran B; de Grauw J; van Rijen M; van Weeren R; Levato R; Malda J
    Adv Healthc Mater; 2020 May; 9(10):e1901807. PubMed ID: 32324336
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.
    Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y
    J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration.
    Sehgal RR; Roohani-Esfahani SI; Zreiqat H; Banerjee R
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1195-1211. PubMed ID: 25846217
    [TBL] [Abstract][Full Text] [Related]  

  • 97. DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration.
    Zhang B; Xing F; Chen L; Zhou C; Gui X; Su Z; Fan S; Zhou Z; Jiang Q; Zhao L; Liu M; Fan Y; Zhang X
    Biomater Adv; 2023 Feb; 145():213261. PubMed ID: 36577193
    [TBL] [Abstract][Full Text] [Related]  

  • 98. An "all-in-one" scaffold targeting macrophages to direct endogenous bone repair in situ.
    Niu Y; Wang L; Yu N; Xing P; Wang Z; Zhong Z; Feng Y; Dong L; Wang C
    Acta Biomater; 2020 Jul; 111():153-169. PubMed ID: 32447062
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants.
    He J; Fang J; Wei P; Li Y; Guo H; Mei Q; Ren F
    Acta Biomater; 2021 Feb; 121():665-681. PubMed ID: 33242640
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Biomechanical Effects of 3D-Printed Bioceramic Scaffolds With Porous Gradient Structures on the Regeneration of Alveolar Bone Defect: A Comprehensive Study.
    Yang Z; Wang C; Gao H; Jia L; Zeng H; Zheng L; Wang C; Zhang H; Wang L; Song J; Fan Y
    Front Bioeng Biotechnol; 2022; 10():882631. PubMed ID: 35694236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.