These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33455330)

  • 101. Robocasting and Laser Micromachining of Sol-Gel Derived 3D Silica/Gelatin/β-TCP Scaffolds for Bone Tissue Regeneration.
    Reyes-Peces MV; Félix E; Martínez-Vázquez FJ; Fernández-Montesinos R; Bomati-Miguel Ó; Mesa-Díaz MDM; Alcántara R; Vilches-Pérez JI; Salido M; De la Rosa-Fox N; Piñero M
    Gels; 2022 Oct; 8(10):. PubMed ID: 36286135
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Black Bioceramics: Combining Regeneration with Therapy.
    Wang X; Xue J; Ma B; Wu J; Chang J; Gelinsky M; Wu C
    Adv Mater; 2020 Dec; 32(48):e2005140. PubMed ID: 33094493
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Dynamic degradation patterns of porous polycaprolactone/β-tricalcium phosphate composites orchestrate macrophage responses and immunoregulatory bone regeneration.
    Wu H; Wei X; Liu Y; Dong H; Tang Z; Wang N; Bao S; Wu Z; Shi L; Zheng X; Li X; Guo Z
    Bioact Mater; 2023 Mar; 21():595-611. PubMed ID: 36685731
    [TBL] [Abstract][Full Text] [Related]  

  • 104. A modular design strategy to integrate mechanotransduction concepts in scaffold-based bone tissue engineering.
    Entezari A; Swain MV; Gooding JJ; Roohani I; Li Q
    Acta Biomater; 2020 Dec; 118():100-112. PubMed ID: 33059100
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Sr and Mg Doped Bi-Phasic Calcium Phosphate Macroporous Bone Graft Substitutes Fabricated by Robocasting: A Structural and Cytocompatibility Assessment.
    Besleaga C; Nan B; Popa AC; Balescu LM; Nedelcu L; Neto AS; Pasuk I; Leonat L; Popescu-Pelin G; Ferreira JMF; Stan GE
    J Funct Biomater; 2022 Aug; 13(3):. PubMed ID: 36135559
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Janus-Inspired Core-Shell Structure Hydrogel Programmatically Releases Melatonin for Reconstruction of Postoperative Bone Tumor.
    Huang W; Wu X; Zhao Y; Liu Y; Zhang B; Qiao M; Zhu Z; Zhao Z
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2639-2655. PubMed ID: 36603840
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Nature-Inspired Unconventional Approaches to Develop 3D Bioceramic Scaffolds with Enhanced Regenerative Ability.
    Ruffini A; Sandri M; Dapporto M; Campodoni E; Tampieri A; Sprio S
    Biomedicines; 2021 Jul; 9(8):. PubMed ID: 34440120
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Fabrication of Microstructured Calcium Phosphate Ceramics Scaffolds by Material Extrusion-Based 3D Printing Approach.
    Dee P; Tan S; Ferrand HL
    Int J Bioprint; 2022; 8(2):551. PubMed ID: 35669324
    [TBL] [Abstract][Full Text] [Related]  

  • 109. A two-scale Weibull approach to the failure of porous ceramic structures made by robocasting: possibilities and limits.
    Genet M; Houmard M; Eslava S; Saiz E; Tomsia AP
    J Eur Ceram Soc; 2013 Apr; 33(4):679-688. PubMed ID: 23439936
    [TBL] [Abstract][Full Text] [Related]  

  • 110. 3D printing of conch-like scaffolds for guiding cell migration and directional bone growth.
    Feng B; Zhang M; Qin C; Zhai D; Wang Y; Zhou Y; Chang J; Zhu Y; Wu C
    Bioact Mater; 2023 Apr; 22():127-140. PubMed ID: 36203957
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Favorable osteogenic activity of iron doped in silicocarnotite bioceramic: In vitro and
    Zhang J; Deng F; Liu X; Ge Y; Zeng Y; Zhai Z; Ning C; Li H
    J Orthop Translat; 2022 Jan; 32():103-111. PubMed ID: 35228992
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Multi-Parametric Exploration of a Selection of Piezoceramic Materials for Bone Graft Substitute Applications.
    Nedelcu L; Ferreira JMF; Popa AC; Amarande L; Nan B; Bălescu LM; Geambașu CD; Cioangher MC; Leonat L; Grigoroscuță M; Cristea D; Stroescu H; Ciocoiu RC; Stan GE
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769908
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration.
    Pupilli F; Ruffini A; Dapporto M; Tavoni M; Tampieri A; Sprio S
    Biomimetics (Basel); 2022 Aug; 7(3):. PubMed ID: 35997432
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Toward Smart Biomimetic Apatite-Based Bone Scaffolds with Spatially Controlled Ion Substitutions.
    Cianflone E; Brouillet F; Grossin D; Soulié J; Josse C; Vig S; Fernandes MH; Tenailleau C; Duployer B; Thouron C; Drouet C
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770480
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review.
    Zhao C; Liu W; Zhu M; Wu C; Zhu Y
    Bioact Mater; 2022 Dec; 18():383-398. PubMed ID: 35415311
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Correction: Core-shell bioceramic fiber-derived biphasic granules with adjustable core compositions for tuning bone regeneration efficacy.
    Bao Z; Yang J; Shen J; Wang C; Li Y; Zhang Y; Yang G; Zhong C; Xu S; Xie L; Shen M; Gou Z
    J Mater Chem B; 2023 Apr; 11(16):3752-3753. PubMed ID: 37042959
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Dual-core-component multiphasic bioceramic granules with selective-area porous structures facilitating bone tissue regeneration and repair.
    Cao B; Xie L; Xu Y; Shen J; Zhang Y; Wang Y; Weng X; Bao Z; Yang X; Gou Z; Wang C
    RSC Adv; 2024 Mar; 14(15):10526-10537. PubMed ID: 38567335
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Appreciable biosafety, biocompatibility and osteogenic capability of 3D printed nonstoichiometric wollastonite scaffolds favorable for clinical translation.
    Wei Y; Wang Z; Lei L; Han J; Zhong S; Yang X; Gou Z; Chen L
    J Orthop Translat; 2024 Mar; 45():88-99. PubMed ID: 38516038
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Bioceramic scaffolds with two-step internal/external modification of copper-containing polydopamine enhance antibacterial and alveolar bone regeneration capability.
    Jiang X; Lei L; Sun W; Wei Y; Han J; Zhong S; Yang X; Gou Z; Chen L
    J Zhejiang Univ Sci B; 2024 Jan; 25(1):65-82. PubMed ID: 38163667
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Customized Additive Manufacturing in Bone Scaffolds-The Gateway to Precise Bone Defect Treatment.
    Zhou J; See CW; Sreenivasamurthy S; Zhu D
    Research (Wash D C); 2023; 6():0239. PubMed ID: 37818034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.