These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33455369)

  • 41. Controlled Cryogelation and Catalytic Cross-Linking Yields Highly Elastic and Robust Silk Fibroin Scaffolds.
    Mao Z; Bi X; Ye F; Shu X; Sun L; Guan J; Ritchie RO; Wu S
    ACS Biomater Sci Eng; 2020 Aug; 6(8):4512-4522. PubMed ID: 33455190
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO
    Johari N; Madaah Hosseini HR; Samadikuchaksaraei A
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():783-792. PubMed ID: 28629081
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of hyaluronan molecular weight on structure and biocompatibility of silk fibroin/hyaluronan scaffolds.
    Fan Z; Zhang F; Liu T; Zuo BQ
    Int J Biol Macromol; 2014 Apr; 65():516-23. PubMed ID: 24495557
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New process to form a silk fibroin porous 3-D structure.
    Tamada Y
    Biomacromolecules; 2005; 6(6):3100-6. PubMed ID: 16283733
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    J Craniofac Surg; 2016 Mar; 27(2):509-15. PubMed ID: 26890455
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering.
    Yang SY; Hwang TH; Che L; Oh JS; Ha Y; Ryu W
    Biomed Mater; 2015 Jun; 10(3):035011. PubMed ID: 26106926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: fabrication and morphology.
    Teimouri A; Ebrahimi R; Emadi R; Beni BH; Chermahini AN
    Int J Biol Macromol; 2015 May; 76():292-302. PubMed ID: 25709014
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient development of silk fibroin membranes on liquid surface for potential use in biomedical materials.
    Li F; Wang X; Chen L; Li Z; Zhang T; Wang T
    Int J Biol Macromol; 2021 Jul; 182():237-243. PubMed ID: 33836192
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Freeze-gelled silk fibroin protein scaffolds for potential applications in soft tissue engineering.
    Bhardwaj N; Chakraborty S; Kundu SC
    Int J Biol Macromol; 2011 Oct; 49(3):260-7. PubMed ID: 21557966
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Recent progress on silk fibroin as tissue engineering biomaterials].
    Wang H; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pore size modulates in vitro osteogenesis of bone marrow mesenchymal stem cells in fibronectin/gelatin coated silk fibroin scaffolds.
    Ai C; Liu L; Goh JC
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112088. PubMed ID: 33947578
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Preparation and characterization of oriented scaffolds derived from cartilage extracellular matrix and silk fibroin].
    Binhong T; Yanhong Z; Lianyong W; Qiang Y; Hongfa L; Yunjie L
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2018 Feb; 36(1):17-22. PubMed ID: 29594990
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Silk fibroin/hydroxyapatite composites for bone tissue engineering.
    Farokhi M; Mottaghitalab F; Samani S; Shokrgozar MA; Kundu SC; Reis RL; Fatahi Y; Kaplan DL
    Biotechnol Adv; 2018; 36(1):68-91. PubMed ID: 28993220
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Programing Performance of Silk Fibroin Superstrong Scaffolds by Mesoscopic Regulation among Hierarchical Structures.
    Zhang Y; Tu H; Wu R; Patil A; Hou C; Lin Z; Meng Z; Ma L; Yu R; Yu W; Liu XY
    Biomacromolecules; 2020 Oct; 21(10):4169-4179. PubMed ID: 32909737
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications.
    Nourmohammadi J; Roshanfar F; Farokhi M; Haghbin Nazarpak M
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():951-958. PubMed ID: 28482612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stem cell-based tissue engineering with silk biomaterials.
    Wang Y; Kim HJ; Vunjak-Novakovic G; Kaplan DL
    Biomaterials; 2006 Dec; 27(36):6064-82. PubMed ID: 16890988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release.
    Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L
    Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin.
    Kim UJ; Park J; Kim HJ; Wada M; Kaplan DL
    Biomaterials; 2005 May; 26(15):2775-85. PubMed ID: 15585282
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing.
    Kweon H; Yeo JH; Lee KG; Lee HC; Na HS; Won YH; Cho CS
    Biomed Mater; 2008 Sep; 3(3):034115. PubMed ID: 18708709
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application.
    Zhang K; Qian Y; Wang H; Fan L; Huang C; Yin A; Mo X
    J Biomed Mater Res A; 2010 Dec; 95(3):870-81. PubMed ID: 20824649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.